edu.usc.ir.sentiment.analysis.cmdline.SentimentTrainerTool Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sentiment-analysis-parser Show documentation
Show all versions of sentiment-analysis-parser Show documentation
Combines Apache OpenNLP and Apache Tika and provides facilities for automatically deriving sentiment from text.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package edu.usc.ir.sentiment.analysis.cmdline;
import java.io.File;
import java.io.IOException;
import opennlp.tools.cmdline.AbstractTrainerTool;
import opennlp.tools.cmdline.CLI;
import opennlp.tools.cmdline.CmdLineUtil;
import opennlp.tools.cmdline.TerminateToolException;
import opennlp.tools.cmdline.params.TrainingToolParams;
import opennlp.tools.sentiment.SentimentFactory;
import opennlp.tools.sentiment.SentimentME;
import opennlp.tools.sentiment.SentimentModel;
import opennlp.tools.sentiment.SentimentSample;
import opennlp.tools.util.model.ModelUtil;
/**
* Class for helping train a sentiment analysis model.
*/
public class SentimentTrainerTool
extends AbstractTrainerTool {
/**
* Constructor
*/
protected SentimentTrainerTool() {
super(SentimentSample.class, TrainingToolParams.class);
}
/**
* Runs the trainer
*
* @param format
* the format to be used
* @param args
* the arguments
*/
@Override
public void run(String format, String[] args) {
super.run(format, args);
if (0 == args.length) {
System.out.println(getHelp());
} else {
mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false);
if (mlParams == null) {
mlParams = ModelUtil.createDefaultTrainingParameters();
}
File modelOutFile = params.getModel();
CmdLineUtil.checkOutputFile("sentiment analysis model", modelOutFile);
SentimentModel model;
try {
SentimentFactory factory = new SentimentFactory();
model = SentimentME.train(params.getLang(), sampleStream, mlParams,
factory);
} catch (IOException e) {
throw new TerminateToolException(-1,
"IO error while reading training data or indexing data: "
+ e.getMessage(),
e);
} finally {
try {
sampleStream.close();
} catch (IOException e) {
}
}
CmdLineUtil.writeModel("sentiment analysis", modelOutFile, model);
}
}
/**
* Returns the help message
*
* @return the message
*/
@Override
public String getHelp() {
return "Usage: " + CLI.CMD + " " + getName() + " model < documents";
}
/**
* Returns the short description of the programme
*
* @return the description
*/
@Override
public String getShortDescription() {
return "learnable sentiment analysis";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy