org.apache.tika.parser.sentiment.analysis.SentimentParser Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sentiment-analysis-parser Show documentation
Show all versions of sentiment-analysis-parser Show documentation
Combines Apache OpenNLP and Apache Tika and provides facilities for automatically deriving sentiment from text.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.tika.parser.sentiment.analysis;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.net.URISyntaxException;
import java.net.URL;
import java.util.Collections;
import java.util.Set;
import java.util.logging.Logger;
import org.apache.commons.io.IOUtils;
import org.apache.tika.exception.TikaException;
import org.apache.tika.metadata.Metadata;
import org.apache.tika.mime.MediaType;
import org.apache.tika.parser.AbstractParser;
import org.apache.tika.parser.ParseContext;
import org.xml.sax.ContentHandler;
import org.xml.sax.SAXException;
import edu.usc.ir.sentiment.analysis.cmdline.SentimentConstant;
import opennlp.tools.sentiment.SentimentME;
import opennlp.tools.sentiment.SentimentModel;
/**
* The main class for creating a sentiment analysis parser.
*/
public class SentimentParser extends AbstractParser {
private static final Set SUPPORTED_TYPES = Collections
.singleton(MediaType.application("sentiment"));
public static final String HELLO_MIME_TYPE = "application/sentiment";
private static final Logger LOG = Logger
.getLogger(SentimentParser.class.getName());
private SentimentME sentiment;
private URL modelUrl;
private File modelFile;
private boolean initialised;
private boolean available;
/**
* Constructor
*/
public SentimentParser() {
System.out.println("Create sentiment parser");
}
/**
* Initialises a sentiment parser
*
* @param url
* the url to the model
*/
public void initialise(URL url) {
try {
if (this.modelUrl != null
&& this.modelUrl.toURI().equals(modelUrl.toURI())) {
return;
}
} catch (URISyntaxException e1) {
throw new RuntimeException(e1.getMessage());
}
this.modelUrl = url;
this.available = url != null;
if (this.available) {
try {
SentimentModel model = new SentimentModel(url);
this.sentiment = new SentimentME(model);
} catch (Exception e) {
LOG.warning("Sentiment Parser setup failed: " + e);
this.available = false;
}
}
initialised = true;
}
/**
* Initialises a sentiment parser
*
* @param file
* the model file
*/
public void initialise(File file) {
this.modelFile = file;
try {
SentimentModel model = new SentimentModel(file);
this.sentiment = new SentimentME(model);
this.available = true;
} catch (IOException e) {
LOG.warning("Sentiment Parser setup failed: " + e);
this.available = false;
}
initialised = true;
}
/**
* Returns the types supported
*
* @param context
* the parse context
* @return the set of types supported
*/
@Override
public Set getSupportedTypes(ParseContext context) {
return SUPPORTED_TYPES;
}
/**
* Performs the parse
*
* @param stream
* the input
* @param handler
* the content handler
* @param metadata
* the metadata passed
* @param context
* the context for the parser
*/
@Override
public void parse(InputStream stream, ContentHandler handler,
Metadata metadata, ParseContext context)
throws IOException, SAXException, TikaException {
if (!initialised) {
String model = metadata.get(SentimentConstant.MODEL);
initialise(new File(model));
}
if (available) {
String inputString = IOUtils.toString(stream, "UTF-8");
String output = sentiment.predict(inputString);
metadata.add("Sentiment: ", output);
} else {
metadata.add("Error", "Model is not available");
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy