Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.aowagie.text.pdf.codec.TIFFFaxDecoder Maven / Gradle / Ivy
/*
* Copyright 2003-2009 by Paulo Soares.
*
* This code was originally released in 2001 by SUN (see class
* com.sun.media.imageioimpl.plugins.tiff.TIFFFaxDecompressor.java)
* using the BSD license in a specific wording. In a mail dating from
* January 23, 2008, Brian Burkhalter (@sun.com) gave us permission
* to use the code under the following version of the BSD license:
*
* Copyright (c) 2005 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any
* kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
* EXCLUDED. SUN MIDROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL
* NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF
* USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
* DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
* ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
* REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
* INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for
* use in the design, construction, operation or maintenance of any
* nuclear facility.
*/
package com.aowagie.text.pdf.codec;
public class TIFFFaxDecoder {
private int bitPointer, bytePointer;
private byte[] data;
private final int w, h;
private final int fillOrder;
// Data structures needed to store changing elements for the previous
// and the current scanline
private int changingElemSize = 0;
private int prevChangingElems[];
private int currChangingElems[];
// Element at which to start search in getNextChangingElement
private int lastChangingElement = 0;
private int compression = 2;
// Variables set by T4Options
private int uncompressedMode = 0;
private int fillBits = 0;
private int oneD;
private static int table1[] = {
0x00, // 0 bits are left in first byte - SHOULD NOT HAPPEN
0x01, // 1 bits are left in first byte
0x03, // 2 bits are left in first byte
0x07, // 3 bits are left in first byte
0x0f, // 4 bits are left in first byte
0x1f, // 5 bits are left in first byte
0x3f, // 6 bits are left in first byte
0x7f, // 7 bits are left in first byte
0xff // 8 bits are left in first byte
};
private static int table2[] = {
0x00, // 0
0x80, // 1
0xc0, // 2
0xe0, // 3
0xf0, // 4
0xf8, // 5
0xfc, // 6
0xfe, // 7
0xff // 8
};
// Table to be used when fillOrder = 2, for flipping bytes.
private static byte flipTable[] = {
0, -128, 64, -64, 32, -96, 96, -32,
16, -112, 80, -48, 48, -80, 112, -16,
8, -120, 72, -56, 40, -88, 104, -24,
24, -104, 88, -40, 56, -72, 120, -8,
4, -124, 68, -60, 36, -92, 100, -28,
20, -108, 84, -44, 52, -76, 116, -12,
12, -116, 76, -52, 44, -84, 108, -20,
28, -100, 92, -36, 60, -68, 124, -4,
2, -126, 66, -62, 34, -94, 98, -30,
18, -110, 82, -46, 50, -78, 114, -14,
10, -118, 74, -54, 42, -86, 106, -22,
26, -102, 90, -38, 58, -70, 122, -6,
6, -122, 70, -58, 38, -90, 102, -26,
22, -106, 86, -42, 54, -74, 118, -10,
14, -114, 78, -50, 46, -82, 110, -18,
30, -98, 94, -34, 62, -66, 126, -2,
1, -127, 65, -63, 33, -95, 97, -31,
17, -111, 81, -47, 49, -79, 113, -15,
9, -119, 73, -55, 41, -87, 105, -23,
25, -103, 89, -39, 57, -71, 121, -7,
5, -123, 69, -59, 37, -91, 101, -27,
21, -107, 85, -43, 53, -75, 117, -11,
13, -115, 77, -51, 45, -83, 109, -19,
29, -99, 93, -35, 61, -67, 125, -3,
3, -125, 67, -61, 35, -93, 99, -29,
19, -109, 83, -45, 51, -77, 115, -13,
11, -117, 75, -53, 43, -85, 107, -21,
27, -101, 91, -37, 59, -69, 123, -5,
7, -121, 71, -57, 39, -89, 103, -25,
23, -105, 87, -41, 55, -73, 119, -9,
15, -113, 79, -49, 47, -81, 111, -17,
31, -97, 95, -33, 63, -65, 127, -1,
};
// The main 10 bit white runs lookup table
private static short white[] = {
// 0 - 7
6430, 6400, 6400, 6400, 3225, 3225, 3225, 3225,
// 8 - 15
944, 944, 944, 944, 976, 976, 976, 976,
// 16 - 23
1456, 1456, 1456, 1456, 1488, 1488, 1488, 1488,
// 24 - 31
718, 718, 718, 718, 718, 718, 718, 718,
// 32 - 39
750, 750, 750, 750, 750, 750, 750, 750,
// 40 - 47
1520, 1520, 1520, 1520, 1552, 1552, 1552, 1552,
// 48 - 55
428, 428, 428, 428, 428, 428, 428, 428,
// 56 - 63
428, 428, 428, 428, 428, 428, 428, 428,
// 64 - 71
654, 654, 654, 654, 654, 654, 654, 654,
// 72 - 79
1072, 1072, 1072, 1072, 1104, 1104, 1104, 1104,
// 80 - 87
1136, 1136, 1136, 1136, 1168, 1168, 1168, 1168,
// 88 - 95
1200, 1200, 1200, 1200, 1232, 1232, 1232, 1232,
// 96 - 103
622, 622, 622, 622, 622, 622, 622, 622,
// 104 - 111
1008, 1008, 1008, 1008, 1040, 1040, 1040, 1040,
// 112 - 119
44, 44, 44, 44, 44, 44, 44, 44,
// 120 - 127
44, 44, 44, 44, 44, 44, 44, 44,
// 128 - 135
396, 396, 396, 396, 396, 396, 396, 396,
// 136 - 143
396, 396, 396, 396, 396, 396, 396, 396,
// 144 - 151
1712, 1712, 1712, 1712, 1744, 1744, 1744, 1744,
// 152 - 159
846, 846, 846, 846, 846, 846, 846, 846,
// 160 - 167
1264, 1264, 1264, 1264, 1296, 1296, 1296, 1296,
// 168 - 175
1328, 1328, 1328, 1328, 1360, 1360, 1360, 1360,
// 176 - 183
1392, 1392, 1392, 1392, 1424, 1424, 1424, 1424,
// 184 - 191
686, 686, 686, 686, 686, 686, 686, 686,
// 192 - 199
910, 910, 910, 910, 910, 910, 910, 910,
// 200 - 207
1968, 1968, 1968, 1968, 2000, 2000, 2000, 2000,
// 208 - 215
2032, 2032, 2032, 2032, 16, 16, 16, 16,
// 216 - 223
10257, 10257, 10257, 10257, 12305, 12305, 12305, 12305,
// 224 - 231
330, 330, 330, 330, 330, 330, 330, 330,
// 232 - 239
330, 330, 330, 330, 330, 330, 330, 330,
// 240 - 247
330, 330, 330, 330, 330, 330, 330, 330,
// 248 - 255
330, 330, 330, 330, 330, 330, 330, 330,
// 256 - 263
362, 362, 362, 362, 362, 362, 362, 362,
// 264 - 271
362, 362, 362, 362, 362, 362, 362, 362,
// 272 - 279
362, 362, 362, 362, 362, 362, 362, 362,
// 280 - 287
362, 362, 362, 362, 362, 362, 362, 362,
// 288 - 295
878, 878, 878, 878, 878, 878, 878, 878,
// 296 - 303
1904, 1904, 1904, 1904, 1936, 1936, 1936, 1936,
// 304 - 311
-18413, -18413, -16365, -16365, -14317, -14317, -10221, -10221,
// 312 - 319
590, 590, 590, 590, 590, 590, 590, 590,
// 320 - 327
782, 782, 782, 782, 782, 782, 782, 782,
// 328 - 335
1584, 1584, 1584, 1584, 1616, 1616, 1616, 1616,
// 336 - 343
1648, 1648, 1648, 1648, 1680, 1680, 1680, 1680,
// 344 - 351
814, 814, 814, 814, 814, 814, 814, 814,
// 352 - 359
1776, 1776, 1776, 1776, 1808, 1808, 1808, 1808,
// 360 - 367
1840, 1840, 1840, 1840, 1872, 1872, 1872, 1872,
// 368 - 375
6157, 6157, 6157, 6157, 6157, 6157, 6157, 6157,
// 376 - 383
6157, 6157, 6157, 6157, 6157, 6157, 6157, 6157,
// 384 - 391
-12275, -12275, -12275, -12275, -12275, -12275, -12275, -12275,
// 392 - 399
-12275, -12275, -12275, -12275, -12275, -12275, -12275, -12275,
// 400 - 407
14353, 14353, 14353, 14353, 16401, 16401, 16401, 16401,
// 408 - 415
22547, 22547, 24595, 24595, 20497, 20497, 20497, 20497,
// 416 - 423
18449, 18449, 18449, 18449, 26643, 26643, 28691, 28691,
// 424 - 431
30739, 30739, -32749, -32749, -30701, -30701, -28653, -28653,
// 432 - 439
-26605, -26605, -24557, -24557, -22509, -22509, -20461, -20461,
// 440 - 447
8207, 8207, 8207, 8207, 8207, 8207, 8207, 8207,
// 448 - 455
72, 72, 72, 72, 72, 72, 72, 72,
// 456 - 463
72, 72, 72, 72, 72, 72, 72, 72,
// 464 - 471
72, 72, 72, 72, 72, 72, 72, 72,
// 472 - 479
72, 72, 72, 72, 72, 72, 72, 72,
// 480 - 487
72, 72, 72, 72, 72, 72, 72, 72,
// 488 - 495
72, 72, 72, 72, 72, 72, 72, 72,
// 496 - 503
72, 72, 72, 72, 72, 72, 72, 72,
// 504 - 511
72, 72, 72, 72, 72, 72, 72, 72,
// 512 - 519
104, 104, 104, 104, 104, 104, 104, 104,
// 520 - 527
104, 104, 104, 104, 104, 104, 104, 104,
// 528 - 535
104, 104, 104, 104, 104, 104, 104, 104,
// 536 - 543
104, 104, 104, 104, 104, 104, 104, 104,
// 544 - 551
104, 104, 104, 104, 104, 104, 104, 104,
// 552 - 559
104, 104, 104, 104, 104, 104, 104, 104,
// 560 - 567
104, 104, 104, 104, 104, 104, 104, 104,
// 568 - 575
104, 104, 104, 104, 104, 104, 104, 104,
// 576 - 583
4107, 4107, 4107, 4107, 4107, 4107, 4107, 4107,
// 584 - 591
4107, 4107, 4107, 4107, 4107, 4107, 4107, 4107,
// 592 - 599
4107, 4107, 4107, 4107, 4107, 4107, 4107, 4107,
// 600 - 607
4107, 4107, 4107, 4107, 4107, 4107, 4107, 4107,
// 608 - 615
266, 266, 266, 266, 266, 266, 266, 266,
// 616 - 623
266, 266, 266, 266, 266, 266, 266, 266,
// 624 - 631
266, 266, 266, 266, 266, 266, 266, 266,
// 632 - 639
266, 266, 266, 266, 266, 266, 266, 266,
// 640 - 647
298, 298, 298, 298, 298, 298, 298, 298,
// 648 - 655
298, 298, 298, 298, 298, 298, 298, 298,
// 656 - 663
298, 298, 298, 298, 298, 298, 298, 298,
// 664 - 671
298, 298, 298, 298, 298, 298, 298, 298,
// 672 - 679
524, 524, 524, 524, 524, 524, 524, 524,
// 680 - 687
524, 524, 524, 524, 524, 524, 524, 524,
// 688 - 695
556, 556, 556, 556, 556, 556, 556, 556,
// 696 - 703
556, 556, 556, 556, 556, 556, 556, 556,
// 704 - 711
136, 136, 136, 136, 136, 136, 136, 136,
// 712 - 719
136, 136, 136, 136, 136, 136, 136, 136,
// 720 - 727
136, 136, 136, 136, 136, 136, 136, 136,
// 728 - 735
136, 136, 136, 136, 136, 136, 136, 136,
// 736 - 743
136, 136, 136, 136, 136, 136, 136, 136,
// 744 - 751
136, 136, 136, 136, 136, 136, 136, 136,
// 752 - 759
136, 136, 136, 136, 136, 136, 136, 136,
// 760 - 767
136, 136, 136, 136, 136, 136, 136, 136,
// 768 - 775
168, 168, 168, 168, 168, 168, 168, 168,
// 776 - 783
168, 168, 168, 168, 168, 168, 168, 168,
// 784 - 791
168, 168, 168, 168, 168, 168, 168, 168,
// 792 - 799
168, 168, 168, 168, 168, 168, 168, 168,
// 800 - 807
168, 168, 168, 168, 168, 168, 168, 168,
// 808 - 815
168, 168, 168, 168, 168, 168, 168, 168,
// 816 - 823
168, 168, 168, 168, 168, 168, 168, 168,
// 824 - 831
168, 168, 168, 168, 168, 168, 168, 168,
// 832 - 839
460, 460, 460, 460, 460, 460, 460, 460,
// 840 - 847
460, 460, 460, 460, 460, 460, 460, 460,
// 848 - 855
492, 492, 492, 492, 492, 492, 492, 492,
// 856 - 863
492, 492, 492, 492, 492, 492, 492, 492,
// 864 - 871
2059, 2059, 2059, 2059, 2059, 2059, 2059, 2059,
// 872 - 879
2059, 2059, 2059, 2059, 2059, 2059, 2059, 2059,
// 880 - 887
2059, 2059, 2059, 2059, 2059, 2059, 2059, 2059,
// 888 - 895
2059, 2059, 2059, 2059, 2059, 2059, 2059, 2059,
// 896 - 903
200, 200, 200, 200, 200, 200, 200, 200,
// 904 - 911
200, 200, 200, 200, 200, 200, 200, 200,
// 912 - 919
200, 200, 200, 200, 200, 200, 200, 200,
// 920 - 927
200, 200, 200, 200, 200, 200, 200, 200,
// 928 - 935
200, 200, 200, 200, 200, 200, 200, 200,
// 936 - 943
200, 200, 200, 200, 200, 200, 200, 200,
// 944 - 951
200, 200, 200, 200, 200, 200, 200, 200,
// 952 - 959
200, 200, 200, 200, 200, 200, 200, 200,
// 960 - 967
232, 232, 232, 232, 232, 232, 232, 232,
// 968 - 975
232, 232, 232, 232, 232, 232, 232, 232,
// 976 - 983
232, 232, 232, 232, 232, 232, 232, 232,
// 984 - 991
232, 232, 232, 232, 232, 232, 232, 232,
// 992 - 999
232, 232, 232, 232, 232, 232, 232, 232,
// 1000 - 1007
232, 232, 232, 232, 232, 232, 232, 232,
// 1008 - 1015
232, 232, 232, 232, 232, 232, 232, 232,
// 1016 - 1023
232, 232, 232, 232, 232, 232, 232, 232,
};
// Additional make up codes for both White and Black runs
private static short additionalMakeup[] = {
28679, 28679, 31752, (short)32777,
(short)33801, (short)34825, (short)35849, (short)36873,
(short)29703, (short)29703, (short)30727, (short)30727,
(short)37897, (short)38921, (short)39945, (short)40969
};
// Initial black run look up table, uses the first 4 bits of a code
private static short initBlack[] = {
// 0 - 7
3226, 6412, 200, 168, 38, 38, 134, 134,
// 8 - 15
100, 100, 100, 100, 68, 68, 68, 68
};
//
private static short twoBitBlack[] = {292, 260, 226, 226}; // 0 - 3
// Main black run table, using the last 9 bits of possible 13 bit code
private static short black[] = {
// 0 - 7
62, 62, 30, 30, 0, 0, 0, 0,
// 8 - 15
0, 0, 0, 0, 0, 0, 0, 0,
// 16 - 23
0, 0, 0, 0, 0, 0, 0, 0,
// 24 - 31
0, 0, 0, 0, 0, 0, 0, 0,
// 32 - 39
3225, 3225, 3225, 3225, 3225, 3225, 3225, 3225,
// 40 - 47
3225, 3225, 3225, 3225, 3225, 3225, 3225, 3225,
// 48 - 55
3225, 3225, 3225, 3225, 3225, 3225, 3225, 3225,
// 56 - 63
3225, 3225, 3225, 3225, 3225, 3225, 3225, 3225,
// 64 - 71
588, 588, 588, 588, 588, 588, 588, 588,
// 72 - 79
1680, 1680, 20499, 22547, 24595, 26643, 1776, 1776,
// 80 - 87
1808, 1808, -24557, -22509, -20461, -18413, 1904, 1904,
// 88 - 95
1936, 1936, -16365, -14317, 782, 782, 782, 782,
// 96 - 103
814, 814, 814, 814, -12269, -10221, 10257, 10257,
// 104 - 111
12305, 12305, 14353, 14353, 16403, 18451, 1712, 1712,
// 112 - 119
1744, 1744, 28691, 30739, -32749, -30701, -28653, -26605,
// 120 - 127
2061, 2061, 2061, 2061, 2061, 2061, 2061, 2061,
// 128 - 135
424, 424, 424, 424, 424, 424, 424, 424,
// 136 - 143
424, 424, 424, 424, 424, 424, 424, 424,
// 144 - 151
424, 424, 424, 424, 424, 424, 424, 424,
// 152 - 159
424, 424, 424, 424, 424, 424, 424, 424,
// 160 - 167
750, 750, 750, 750, 1616, 1616, 1648, 1648,
// 168 - 175
1424, 1424, 1456, 1456, 1488, 1488, 1520, 1520,
// 176 - 183
1840, 1840, 1872, 1872, 1968, 1968, 8209, 8209,
// 184 - 191
524, 524, 524, 524, 524, 524, 524, 524,
// 192 - 199
556, 556, 556, 556, 556, 556, 556, 556,
// 200 - 207
1552, 1552, 1584, 1584, 2000, 2000, 2032, 2032,
// 208 - 215
976, 976, 1008, 1008, 1040, 1040, 1072, 1072,
// 216 - 223
1296, 1296, 1328, 1328, 718, 718, 718, 718,
// 224 - 231
456, 456, 456, 456, 456, 456, 456, 456,
// 232 - 239
456, 456, 456, 456, 456, 456, 456, 456,
// 240 - 247
456, 456, 456, 456, 456, 456, 456, 456,
// 248 - 255
456, 456, 456, 456, 456, 456, 456, 456,
// 256 - 263
326, 326, 326, 326, 326, 326, 326, 326,
// 264 - 271
326, 326, 326, 326, 326, 326, 326, 326,
// 272 - 279
326, 326, 326, 326, 326, 326, 326, 326,
// 280 - 287
326, 326, 326, 326, 326, 326, 326, 326,
// 288 - 295
326, 326, 326, 326, 326, 326, 326, 326,
// 296 - 303
326, 326, 326, 326, 326, 326, 326, 326,
// 304 - 311
326, 326, 326, 326, 326, 326, 326, 326,
// 312 - 319
326, 326, 326, 326, 326, 326, 326, 326,
// 320 - 327
358, 358, 358, 358, 358, 358, 358, 358,
// 328 - 335
358, 358, 358, 358, 358, 358, 358, 358,
// 336 - 343
358, 358, 358, 358, 358, 358, 358, 358,
// 344 - 351
358, 358, 358, 358, 358, 358, 358, 358,
// 352 - 359
358, 358, 358, 358, 358, 358, 358, 358,
// 360 - 367
358, 358, 358, 358, 358, 358, 358, 358,
// 368 - 375
358, 358, 358, 358, 358, 358, 358, 358,
// 376 - 383
358, 358, 358, 358, 358, 358, 358, 358,
// 384 - 391
490, 490, 490, 490, 490, 490, 490, 490,
// 392 - 399
490, 490, 490, 490, 490, 490, 490, 490,
// 400 - 407
4113, 4113, 6161, 6161, 848, 848, 880, 880,
// 408 - 415
912, 912, 944, 944, 622, 622, 622, 622,
// 416 - 423
654, 654, 654, 654, 1104, 1104, 1136, 1136,
// 424 - 431
1168, 1168, 1200, 1200, 1232, 1232, 1264, 1264,
// 432 - 439
686, 686, 686, 686, 1360, 1360, 1392, 1392,
// 440 - 447
12, 12, 12, 12, 12, 12, 12, 12,
// 448 - 455
390, 390, 390, 390, 390, 390, 390, 390,
// 456 - 463
390, 390, 390, 390, 390, 390, 390, 390,
// 464 - 471
390, 390, 390, 390, 390, 390, 390, 390,
// 472 - 479
390, 390, 390, 390, 390, 390, 390, 390,
// 480 - 487
390, 390, 390, 390, 390, 390, 390, 390,
// 488 - 495
390, 390, 390, 390, 390, 390, 390, 390,
// 496 - 503
390, 390, 390, 390, 390, 390, 390, 390,
// 504 - 511
390, 390, 390, 390, 390, 390, 390, 390,
};
private static byte twoDCodes[] = {
// 0 - 7
80, 88, 23, 71, 30, 30, 62, 62,
// 8 - 15
4, 4, 4, 4, 4, 4, 4, 4,
// 16 - 23
11, 11, 11, 11, 11, 11, 11, 11,
// 24 - 31
11, 11, 11, 11, 11, 11, 11, 11,
// 32 - 39
35, 35, 35, 35, 35, 35, 35, 35,
// 40 - 47
35, 35, 35, 35, 35, 35, 35, 35,
// 48 - 55
51, 51, 51, 51, 51, 51, 51, 51,
// 56 - 63
51, 51, 51, 51, 51, 51, 51, 51,
// 64 - 71
41, 41, 41, 41, 41, 41, 41, 41,
// 72 - 79
41, 41, 41, 41, 41, 41, 41, 41,
// 80 - 87
41, 41, 41, 41, 41, 41, 41, 41,
// 88 - 95
41, 41, 41, 41, 41, 41, 41, 41,
// 96 - 103
41, 41, 41, 41, 41, 41, 41, 41,
// 104 - 111
41, 41, 41, 41, 41, 41, 41, 41,
// 112 - 119
41, 41, 41, 41, 41, 41, 41, 41,
// 120 - 127
41, 41, 41, 41, 41, 41, 41, 41,
};
/**
* @param fillOrder The fill order of the compressed data bytes.
* @param w
* @param h
*/
TIFFFaxDecoder(final int fillOrder, final int w, final int h) {
this.fillOrder = fillOrder;
this.w = w;
this.h = h;
this.bitPointer = 0;
this.bytePointer = 0;
this.prevChangingElems = new int[w];
this.currChangingElems = new int[w];
}
/**
* Reverses the bits in the array
* @param b the bits to reverse
*
* @since 2.0.7
*/
public static void reverseBits(final byte[] b) {
for (int k = 0; k < b.length; ++k) {
b[k] = flipTable[b[k] & 0xff];
}
}
// One-dimensional decoding methods
void decode1D(final byte[] buffer, final byte[] compData,
final int startX, final int height) {
this.data = compData;
int lineOffset = 0;
final int scanlineStride = (this.w + 7)/8;
this.bitPointer = 0;
this.bytePointer = 0;
for (int i = 0; i < height; i++) {
decodeNextScanline(buffer, lineOffset, startX);
lineOffset += scanlineStride;
}
}
private void decodeNextScanline(final byte[] buffer,
final int lineOffset, int bitOffset) {
int bits = 0, code = 0, isT = 0;
int current, entry, twoBits;
boolean isWhite = true;
// Initialize starting of the changing elements array
this.changingElemSize = 0;
// While scanline not complete
while (bitOffset < this.w) {
while (isWhite) {
// White run
current = nextNBits(10);
entry = white[current];
// Get the 3 fields from the entry
isT = entry & 0x0001;
bits = entry >>> 1 & 0x0f;
if (bits == 12) { // Additional Make up code
// Get the next 2 bits
twoBits = nextLesserThan8Bits(2);
// Consolidate the 2 new bits and last 2 bits into 4 bits
current = current << 2 & 0x000c | twoBits;
entry = additionalMakeup[current];
bits = entry >>> 1 & 0x07; // 3 bits 0000 0111
code = entry >>> 4 & 0x0fff; // 12 bits
bitOffset += code; // Skip white run
updatePointer(4 - bits);
} else if (bits == 0) { // ERROR
throw new RuntimeException("Invalid code encountered.");
} else if (bits == 15) { // EOL
throw new RuntimeException("EOL code word encountered in White run.");
} else {
// 11 bits - 0000 0111 1111 1111 = 0x07ff
code = entry >>> 5 & 0x07ff;
bitOffset += code;
updatePointer(10 - bits);
if (isT == 0) {
isWhite = false;
this.currChangingElems[this.changingElemSize++] = bitOffset;
}
}
}
// Check whether this run completed one width, if so
// advance to next byte boundary for compression = 2.
if (bitOffset == this.w) {
if (this.compression == 2) {
advancePointer();
}
break;
}
while (!isWhite) {
// Black run
current = nextLesserThan8Bits(4);
entry = initBlack[current];
// Get the 3 fields from the entry
isT = entry & 0x0001;
bits = entry >>> 1 & 0x000f;
code = entry >>> 5 & 0x07ff;
if (code == 100) {
current = nextNBits(9);
entry = black[current];
// Get the 3 fields from the entry
isT = entry & 0x0001;
bits = entry >>> 1 & 0x000f;
code = entry >>> 5 & 0x07ff;
if (bits == 12) {
// Additional makeup codes
updatePointer(5);
current = nextLesserThan8Bits(4);
entry = additionalMakeup[current];
bits = entry >>> 1 & 0x07; // 3 bits 0000 0111
code = entry >>> 4 & 0x0fff; // 12 bits
setToBlack(buffer, lineOffset, bitOffset, code);
bitOffset += code;
updatePointer(4 - bits);
} else if (bits == 15) {
// EOL code
throw new RuntimeException("EOL code word encountered in Black run.");
} else {
setToBlack(buffer, lineOffset, bitOffset, code);
bitOffset += code;
updatePointer(9 - bits);
if (isT == 0) {
isWhite = true;
this.currChangingElems[this.changingElemSize++] = bitOffset;
}
}
} else if (code == 200) {
// Is a Terminating code
current = nextLesserThan8Bits(2);
entry = twoBitBlack[current];
code = entry >>> 5 & 0x07ff;
bits = entry >>> 1 & 0x0f;
setToBlack(buffer, lineOffset, bitOffset, code);
bitOffset += code;
updatePointer(2 - bits);
isWhite = true;
this.currChangingElems[this.changingElemSize++] = bitOffset;
} else {
// Is a Terminating code
setToBlack(buffer, lineOffset, bitOffset, code);
bitOffset += code;
updatePointer(4 - bits);
isWhite = true;
this.currChangingElems[this.changingElemSize++] = bitOffset;
}
}
// Check whether this run completed one width
if (bitOffset == this.w) {
if (this.compression == 2) {
advancePointer();
}
break;
}
}
this.currChangingElems[this.changingElemSize++] = bitOffset;
}
// Two-dimensional decoding methods
void decode2D(final byte[] buffer,
final byte compData[],
final int startX,
final int height,
final long tiffT4Options) {
this.data = compData;
this.compression = 3;
this.bitPointer = 0;
this.bytePointer = 0;
final int scanlineStride = (this.w + 7)/8;
int a0, a1, b1, b2;
final int[] b = new int[2];
int entry, code, bits;
boolean isWhite;
int currIndex = 0;
int temp[];
// fillBits - dealt with this in readEOL
// 1D/2D encoding - dealt with this in readEOL
// uncompressedMode - haven't dealt with this yet.
this.oneD = (int)(tiffT4Options & 0x01);
this.uncompressedMode = (int)((tiffT4Options & 0x02) >> 1);
this.fillBits = (int)((tiffT4Options & 0x04) >> 2);
// The data must start with an EOL code
if (readEOL(true) != 1) {
throw new RuntimeException("First scanline must be 1D encoded.");
}
int lineOffset = 0;
int bitOffset;
// Then the 1D encoded scanline data will occur, changing elements
// array gets set.
decodeNextScanline(buffer, lineOffset, startX);
lineOffset += scanlineStride;
for (int lines = 1; lines < height; lines++) {
// Every line must begin with an EOL followed by a bit which
// indicates whether the following scanline is 1D or 2D encoded.
if (readEOL(false) == 0) {
// 2D encoded scanline follows
// Initialize previous scanlines changing elements, and
// initialize current scanline's changing elements array
temp = this.prevChangingElems;
this.prevChangingElems = this.currChangingElems;
this.currChangingElems = temp;
currIndex = 0;
// a0 has to be set just before the start of this scanline.
a0 = -1;
isWhite = true;
bitOffset = startX;
this.lastChangingElement = 0;
while (bitOffset < this.w) {
// Get the next changing element
getNextChangingElement(a0, isWhite, b);
b1 = b[0];
b2 = b[1];
// Get the next seven bits
entry = nextLesserThan8Bits(7);
// Run these through the 2DCodes table
entry = twoDCodes[entry] & 0xff;
// Get the code and the number of bits used up
code = (entry & 0x78) >>> 3;
bits = entry & 0x07;
if (code == 0) {
if (!isWhite) {
setToBlack(buffer, lineOffset, bitOffset,
b2 - bitOffset);
}
bitOffset = a0 = b2;
// Set pointer to consume the correct number of bits.
updatePointer(7 - bits);
} else if (code == 1) {
// Horizontal
updatePointer(7 - bits);
// identify the next 2 codes.
int number;
if (isWhite) {
number = decodeWhiteCodeWord();
bitOffset += number;
this.currChangingElems[currIndex++] = bitOffset;
number = decodeBlackCodeWord();
setToBlack(buffer, lineOffset, bitOffset, number);
bitOffset += number;
this.currChangingElems[currIndex++] = bitOffset;
} else {
number = decodeBlackCodeWord();
setToBlack(buffer, lineOffset, bitOffset, number);
bitOffset += number;
this.currChangingElems[currIndex++] = bitOffset;
number = decodeWhiteCodeWord();
bitOffset += number;
this.currChangingElems[currIndex++] = bitOffset;
}
a0 = bitOffset;
} else if (code <= 8) {
// Vertical
a1 = b1 + code - 5;
this.currChangingElems[currIndex++] = a1;
// We write the current color till a1 - 1 pos,
// since a1 is where the next color starts
if (!isWhite) {
setToBlack(buffer, lineOffset, bitOffset,
a1 - bitOffset);
}
bitOffset = a0 = a1;
isWhite = !isWhite;
updatePointer(7 - bits);
} else {
throw new RuntimeException("Invalid code encountered while decoding 2D group 3 compressed data.");
}
}
// Add the changing element beyond the current scanline for the
// other color too
this.currChangingElems[currIndex++] = bitOffset;
this.changingElemSize = currIndex;
} else {
// 1D encoded scanline follows
decodeNextScanline(buffer, lineOffset, startX);
}
lineOffset += scanlineStride;
}
}
void decodeT6(final byte[] buffer,
final byte[] compData,
final int startX,
final int height,
final long tiffT6Options) {
this.data = compData;
this.compression = 4;
this.bitPointer = 0;
this.bytePointer = 0;
final int scanlineStride = (this.w + 7)/8;
int a0, a1, b1, b2;
int entry, code, bits;
boolean isWhite;
int currIndex;
int temp[];
// Return values from getNextChangingElement
final int[] b = new int[2];
// uncompressedMode - have written some code for this, but this
// has not been tested due to lack of test images using this optional
this.uncompressedMode = (int)((tiffT6Options & 0x02) >> 1);
// Local cached reference
int[] cce = this.currChangingElems;
// Assume invisible preceding row of all white pixels and insert
// both black and white changing elements beyond the end of this
// imaginary scanline.
this.changingElemSize = 0;
cce[this.changingElemSize++] = this.w;
cce[this.changingElemSize++] = this.w;
int lineOffset = 0;
int bitOffset;
for (int lines = 0; lines < height; lines++) {
// a0 has to be set just before the start of the scanline.
a0 = -1;
isWhite = true;
// Assign the changing elements of the previous scanline to
// prevChangingElems and start putting this new scanline's
// changing elements into the currChangingElems.
temp = this.prevChangingElems;
this.prevChangingElems = this.currChangingElems;
cce = this.currChangingElems = temp;
currIndex = 0;
// Start decoding the scanline at startX in the raster
bitOffset = startX;
// Reset search start position for getNextChangingElement
this.lastChangingElement = 0;
// Till one whole scanline is decoded
while (bitOffset < this.w) {
// Get the next changing element
getNextChangingElement(a0, isWhite, b);
b1 = b[0];
b2 = b[1];
// Get the next seven bits
entry = nextLesserThan8Bits(7);
// Run these through the 2DCodes table
entry = twoDCodes[entry] & 0xff;
// Get the code and the number of bits used up
code = (entry & 0x78) >>> 3;
bits = entry & 0x07;
if (code == 0) { // Pass
// We always assume WhiteIsZero format for fax.
if (!isWhite) {
setToBlack(buffer, lineOffset, bitOffset,
b2 - bitOffset);
}
bitOffset = a0 = b2;
// Set pointer to only consume the correct number of bits.
updatePointer(7 - bits);
} else if (code == 1) { // Horizontal
// Set pointer to only consume the correct number of bits.
updatePointer(7 - bits);
// identify the next 2 alternating color codes.
int number;
if (isWhite) {
// Following are white and black runs
number = decodeWhiteCodeWord();
bitOffset += number;
cce[currIndex++] = bitOffset;
number = decodeBlackCodeWord();
setToBlack(buffer, lineOffset, bitOffset, number);
bitOffset += number;
cce[currIndex++] = bitOffset;
} else {
// First a black run and then a white run follows
number = decodeBlackCodeWord();
setToBlack(buffer, lineOffset, bitOffset, number);
bitOffset += number;
cce[currIndex++] = bitOffset;
number = decodeWhiteCodeWord();
bitOffset += number;
cce[currIndex++] = bitOffset;
}
a0 = bitOffset;
} else if (code <= 8) { // Vertical
a1 = b1 + code - 5;
cce[currIndex++] = a1;
// We write the current color till a1 - 1 pos,
// since a1 is where the next color starts
if (!isWhite) {
setToBlack(buffer, lineOffset, bitOffset,
a1 - bitOffset);
}
bitOffset = a0 = a1;
isWhite = !isWhite;
updatePointer(7 - bits);
} else if (code == 11) {
if (nextLesserThan8Bits(3) != 7) {
throw new RuntimeException("Invalid code encountered while decoding 2D group 4 compressed data.");
}
int zeros = 0;
boolean exit = false;
while (!exit) {
while (nextLesserThan8Bits(1) != 1) {
zeros++;
}
if (zeros > 5) {
// Exit code
// Zeros before exit code
zeros = zeros - 6;
if (!isWhite && zeros > 0) {
cce[currIndex++] = bitOffset;
}
// Zeros before the exit code
bitOffset += zeros;
if (zeros > 0) {
// Some zeros have been written
isWhite = true;
}
// Read in the bit which specifies the color of
// the following run
if (nextLesserThan8Bits(1) == 0) {
if (!isWhite) {
cce[currIndex++] = bitOffset;
}
isWhite = true;
} else {
if (isWhite) {
cce[currIndex++] = bitOffset;
}
isWhite = false;
}
exit = true;
}
if (zeros == 5) {
if (!isWhite) {
cce[currIndex++] = bitOffset;
}
bitOffset += zeros;
// Last thing written was white
isWhite = true;
} else {
bitOffset += zeros;
cce[currIndex++] = bitOffset;
setToBlack(buffer, lineOffset, bitOffset, 1);
++bitOffset;
// Last thing written was black
isWhite = false;
}
}
} else {
//[email protected]
//Microsoft TIFF renderers seem to treat unknown codes as line-breaks
//That is, they give up on the current line and move on to the next one
//set bitOffset to w to move on to the next scan line.
bitOffset = this.w;
updatePointer(7 - bits);
}
}
// Add the changing element beyond the current scanline for the
// other color too
//make sure that the index does not exceed the bounds of the array
if(currIndex < cce.length) {
cce[currIndex++] = bitOffset;
}
// Number of changing elements in this scanline.
this.changingElemSize = currIndex;
lineOffset += scanlineStride;
}
}
private void setToBlack(final byte[] buffer,
final int lineOffset, final int bitOffset,
final int numBits) {
int bitNum = 8*lineOffset + bitOffset;
final int lastBit = bitNum + numBits;
int byteNum = bitNum >> 3;
// Handle bits in first byte
final int shift = bitNum & 0x7;
if (shift > 0) {
int maskVal = 1 << 7 - shift;
byte val = buffer[byteNum];
while (maskVal > 0 && bitNum < lastBit) {
val |= maskVal;
maskVal >>= 1;
++bitNum;
}
buffer[byteNum] = val;
}
// Fill in 8 bits at a time
byteNum = bitNum >> 3;
while (bitNum < lastBit - 7) {
buffer[byteNum++] = (byte)255;
bitNum += 8;
}
// Fill in remaining bits
while (bitNum < lastBit) {
byteNum = bitNum >> 3;
buffer[byteNum] |= 1 << 7 - (bitNum & 0x7);
++bitNum;
}
}
// Returns run length
private int decodeWhiteCodeWord() {
int current, entry, bits, isT, twoBits, code = -1;
int runLength = 0;
boolean isWhite = true;
while (isWhite) {
current = nextNBits(10);
entry = white[current];
// Get the 3 fields from the entry
isT = entry & 0x0001;
bits = entry >>> 1 & 0x0f;
if (bits == 12) { // Additional Make up code
// Get the next 2 bits
twoBits = nextLesserThan8Bits(2);
// Consolidate the 2 new bits and last 2 bits into 4 bits
current = current << 2 & 0x000c | twoBits;
entry = additionalMakeup[current];
bits = entry >>> 1 & 0x07; // 3 bits 0000 0111
code = entry >>> 4 & 0x0fff; // 12 bits
runLength += code;
updatePointer(4 - bits);
} else if (bits == 0) { // ERROR
throw new RuntimeException("Invalid code encountered.");
} else if (bits == 15) { // EOL
throw new RuntimeException("EOL code word encountered in White run.");
} else {
// 11 bits - 0000 0111 1111 1111 = 0x07ff
code = entry >>> 5 & 0x07ff;
runLength += code;
updatePointer(10 - bits);
if (isT == 0) {
isWhite = false;
}
}
}
return runLength;
}
// Returns run length
private int decodeBlackCodeWord() {
int current, entry, bits, isT, code = -1;
int runLength = 0;
boolean isWhite = false;
while (!isWhite) {
current = nextLesserThan8Bits(4);
entry = initBlack[current];
// Get the 3 fields from the entry
isT = entry & 0x0001;
bits = entry >>> 1 & 0x000f;
code = entry >>> 5 & 0x07ff;
if (code == 100) {
current = nextNBits(9);
entry = black[current];
// Get the 3 fields from the entry
isT = entry & 0x0001;
bits = entry >>> 1 & 0x000f;
code = entry >>> 5 & 0x07ff;
if (bits == 12) {
// Additional makeup codes
updatePointer(5);
current = nextLesserThan8Bits(4);
entry = additionalMakeup[current];
bits = entry >>> 1 & 0x07; // 3 bits 0000 0111
code = entry >>> 4 & 0x0fff; // 12 bits
runLength += code;
updatePointer(4 - bits);
} else if (bits == 15) {
// EOL code
throw new RuntimeException("EOL code word encountered in Black run.");
} else {
runLength += code;
updatePointer(9 - bits);
if (isT == 0) {
isWhite = true;
}
}
} else if (code == 200) {
// Is a Terminating code
current = nextLesserThan8Bits(2);
entry = twoBitBlack[current];
code = entry >>> 5 & 0x07ff;
runLength += code;
bits = entry >>> 1 & 0x0f;
updatePointer(2 - bits);
isWhite = true;
} else {
// Is a Terminating code
runLength += code;
updatePointer(4 - bits);
isWhite = true;
}
}
return runLength;
}
private int readEOL(final boolean isFirstEOL) {
if (this.fillBits == 0) {
final int next12Bits = nextNBits(12);
if (isFirstEOL && next12Bits == 0) {
// Might have the case of EOL padding being used even
// though it was not flagged in the T4Options field.
// This was observed to be the case in TIFFs produced
// by a well known vendor who shall remain nameless.
if(nextNBits(4) == 1) {
// EOL must be padded: reset the fillBits flag.
this.fillBits = 1;
return 1;
}
}
if(next12Bits != 1) {
throw new RuntimeException("Scanline must begin with EOL code word.");
}
} else if (this.fillBits == 1) {
// First EOL code word xxxx 0000 0000 0001 will occur
// As many fill bits will be present as required to make
// the EOL code of 12 bits end on a byte boundary.
final int bitsLeft = 8 - this.bitPointer;
if (nextNBits(bitsLeft) != 0) {
throw new RuntimeException("All fill bits preceding EOL code must be 0.");
}
// If the number of bitsLeft is less than 8, then to have a 12
// bit EOL sequence, two more bytes are certainly going to be
// required. The first of them has to be all zeros, so ensure
// that.
if (bitsLeft < 4) {
if (nextNBits(8) != 0) {
throw new RuntimeException("All fill bits preceding EOL code must be 0.");
}
}
// There might be a random number of fill bytes with 0s, so
// loop till the EOL of 0000 0001 is found, as long as all
// the bytes preceding it are 0's.
int n;
while ((n = nextNBits(8)) != 1) {
// If not all zeros
if (n != 0) {
throw new RuntimeException("All fill bits preceding EOL code must be 0.");
}
}
}
// If one dimensional encoding mode, then always return 1
if (this.oneD == 0) {
return 1;
} else {
// Otherwise for 2D encoding mode,
// The next one bit signifies 1D/2D encoding of next line.
return nextLesserThan8Bits(1);
}
}
private void getNextChangingElement(final int a0, final boolean isWhite, final int[] ret) {
// Local copies of instance variables
final int[] pce = this.prevChangingElems;
final int ces = this.changingElemSize;
// If the previous match was at an odd element, we still
// have to search the preceeding element.
// int start = lastChangingElement & ~0x1;
int start = this.lastChangingElement > 0 ? this.lastChangingElement - 1 : 0;
if (isWhite) {
start &= ~0x1; // Search even numbered elements
} else {
start |= 0x1; // Search odd numbered elements
}
int i = start;
for (; i < ces; i += 2) {
final int temp = pce[i];
if (temp > a0) {
this.lastChangingElement = i;
ret[0] = temp;
break;
}
}
if (i + 1 < ces) {
ret[1] = pce[i + 1];
}
}
private int nextNBits(final int bitsToGet) {
byte b, next, next2next;
final int l = this.data.length - 1;
final int bp = this.bytePointer;
if (this.fillOrder == 1) {
b = this.data[bp];
if (bp == l) {
next = 0x00;
next2next = 0x00;
} else if (bp + 1 == l) {
next = this.data[bp + 1];
next2next = 0x00;
} else {
next = this.data[bp + 1];
next2next = this.data[bp + 2];
}
} else if (this.fillOrder == 2) {
b = flipTable[this.data[bp] & 0xff];
if (bp == l) {
next = 0x00;
next2next = 0x00;
} else if (bp + 1 == l) {
next = flipTable[this.data[bp + 1] & 0xff];
next2next = 0x00;
} else {
next = flipTable[this.data[bp + 1] & 0xff];
next2next = flipTable[this.data[bp + 2] & 0xff];
}
} else {
throw new RuntimeException("TIFF_FILL_ORDER tag must be either 1 or 2.");
}
final int bitsLeft = 8 - this.bitPointer;
int bitsFromNextByte = bitsToGet - bitsLeft;
int bitsFromNext2NextByte = 0;
if (bitsFromNextByte > 8) {
bitsFromNext2NextByte = bitsFromNextByte - 8;
bitsFromNextByte = 8;
}
this.bytePointer++;
final int i1 = (b & table1[bitsLeft]) << bitsToGet - bitsLeft;
int i2 = (next & table2[bitsFromNextByte]) >>> 8 - bitsFromNextByte;
int i3 = 0;
if (bitsFromNext2NextByte != 0) {
i2 <<= bitsFromNext2NextByte;
i3 = (next2next & table2[bitsFromNext2NextByte]) >>>
8 - bitsFromNext2NextByte;
i2 |= i3;
this.bytePointer++;
this.bitPointer = bitsFromNext2NextByte;
} else {
if (bitsFromNextByte == 8) {
this.bitPointer = 0;
this.bytePointer++;
} else {
this.bitPointer = bitsFromNextByte;
}
}
final int i = i1 | i2;
return i;
}
private int nextLesserThan8Bits(final int bitsToGet) {
byte b, next;
final int l = this.data.length - 1;
final int bp = this.bytePointer;
if (this.fillOrder == 1) {
b = this.data[bp];
if (bp == l) {
next = 0x00;
} else {
next = this.data[bp + 1];
}
} else if (this.fillOrder == 2) {
b = flipTable[this.data[bp] & 0xff];
if (bp == l) {
next = 0x00;
} else {
next = flipTable[this.data[bp + 1] & 0xff];
}
} else {
throw new RuntimeException("TIFF_FILL_ORDER tag must be either 1 or 2.");
}
final int bitsLeft = 8 - this.bitPointer;
final int bitsFromNextByte = bitsToGet - bitsLeft;
final int shift = bitsLeft - bitsToGet;
int i1, i2;
if (shift >= 0) {
i1 = (b & table1[bitsLeft]) >>> shift;
this.bitPointer += bitsToGet;
if (this.bitPointer == 8) {
this.bitPointer = 0;
this.bytePointer++;
}
} else {
i1 = (b & table1[bitsLeft]) << -shift;
i2 = (next & table2[bitsFromNextByte]) >>> 8 - bitsFromNextByte;
i1 |= i2;
this.bytePointer++;
this.bitPointer = bitsFromNextByte;
}
return i1;
}
// Move pointer backwards by given amount of bits
private void updatePointer(final int bitsToMoveBack) {
final int i = this.bitPointer - bitsToMoveBack;
if (i < 0) {
this.bytePointer--;
this.bitPointer = 8 + i;
} else {
this.bitPointer = i;
}
}
// Move to the next byte boundary
private boolean advancePointer() {
if (this.bitPointer != 0) {
this.bytePointer++;
this.bitPointer = 0;
}
return true;
}
}