eu.interedition.collatex.suffixarray.DeepShallow Maven / Gradle / Ivy
Show all versions of collatex-core Show documentation
package eu.interedition.collatex.suffixarray;
import java.util.Arrays;
/**
*
* Straightforward reimplementation of deep-shallow algorithm given in:
* Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix array construction algorithm.
*
*
* This implementation is basically a translation of the C version given by Giovanni Manzini
*
* The implementation of this algorithm makes some assumptions about the input. See
* {@link #buildSuffixArray(int[], int, int)} for details.
*
* @author Michał Nowak (Carrot Search)
* @author Dawid Weiss (Carrot Search)
*/
public class DeepShallow implements ISuffixArrayBuilder {
private static class SplitGroupResult {
final int equal;
final int lower;
public SplitGroupResult(int equal, int lower) {
this.equal = equal;
this.lower = lower;
}
}
private static class Node {
int skip;
int key;
Node right;
// original author uses down as a pointer to another Node, but sometimes he stores
// int values in it. Because of that, we have two following variables (luckily we
// could do so :)).
Node down;
int downInt;
}
/**
* TODO: What is this magic constant? Do not make it public and do not reuse it anywhere where it isn't needed
* (especially not in the tests). If this algorithm has special considerations, we can run algorithm-specific tests
* with an appropriate decorator.
*/
final static int OVERSHOOT = 575;
private final static int SETMASK = 1 << 30;
private final static int CLEARMASK = ~SETMASK;
private final static int MARKER = 1 << 31;
/**
* recursion limit for mk quicksort:
*/
private final static int MK_QS_TRESH = 20;
private final static int MAX_TRESH = 30;
/**
* limit for shallow_sort
*/
private final static int SHALLOW_LIMIT = 550;
/**
* maximum offset considered when searching a pseudo anchor
*/
private final static int MAX_PSEUDO_ANCHOR_OFFSET = 0;
/**
* maximum ratio bucket_size/group_size accepted for pseudo anchor_sorting
*/
private final static int B2G_RATIO = 1000;
/**
* Update anchor ranks when determining rank for pseudo-sorting
*/
private final static boolean UPDATE_ANCHOR_RANKS = false;
/**
* blind sort is used for groups of size ≤ Text_size/Blind_sort_ratio
*/
private final static int BLIND_SORT_RATIO = 2000;
private final static int STACK_SIZE = 100;
private int[] text;
private int textSize;
private int[] suffixArray;
private int anchorDist; // distance between anchors
private int anchorNum;
private int[] anchorOffset;
private int[] anchorRank;
private final int[] ftab = new int[66049];
private final int[] bucketRanked = new int[66049];
private final int[] runningOrder = new int[257];
private final int[] lcpAux = new int[1 + MAX_TRESH];
private int lcp;
private int cmpLeft;
private int cmpDone;
private int aux;
private int auxWritten;
private int stackSize;
private Node[] stack;
private int start;
/**
* If true
, {@link #buildSuffixArray(int[], int, int)} uses a copy of the input so it is left intact.
*/
private final boolean preserveInput;
public DeepShallow() {
preserveInput = true;
}
public DeepShallow(boolean preserveInput) {
this.preserveInput = preserveInput;
}
/**
* {@inheritDoc}
*
* Additional constraints enforced by Deep-Shallow algorithm:
*
* - non-negative (≥0) symbols in the input
* - maximal symbol value <
256
* input.length
≥ start + length
if {@link #preserveInput} is true
* input.length
≥ start + length + {@link #OVERSHOOT}
if {@link #preserveInput} is false
* - length ≥ 2
*
*/
@Override
public int[] buildSuffixArray(int[] input, int start, int length) {
Tools.assertAlways(input.length >= start + length, "Input array is too short");
MinMax mm = Tools.minmax(input, start, length);
Tools.assertAlways(mm.min >= 0, "input must not be negative");
Tools.assertAlways(mm.max < 256, "max alphabet size is 256");
lcp = 1;
stack = new Node[length];
this.start = start;
if (preserveInput) {
this.start = 0;
text = new int[length + OVERSHOOT];
System.arraycopy(input, start, text, 0, length);
} else {
Tools.assertAlways(input.length >= start + length + OVERSHOOT,
"Input array length must have a trailing space of at least " + OVERSHOOT
+ " bytes.");
text = input;
}
for (int i = length; i < length + OVERSHOOT; i++) {
text[this.start + i] = 0;
}
textSize = length;
suffixArray = new int[length];
int i, j, ss, sb, k, c1, c2, numQSorted = 0;
boolean[] bigDone = new boolean[257];
int[] copyStart = new int[257];
int[] copyEnd = new int[257];
// ------ init array containing positions of anchors
if (anchorDist == 0) {
anchorNum = 0;
} else {
anchorNum = 2 + (length - 1) / anchorDist; // see comment for helped_sort()
anchorRank = new int[anchorNum];
anchorOffset = new int[anchorNum];
for (i = 0; i < anchorNum; i++) {
anchorRank[i] = -1; // pos of anchors is initially unknown
anchorOffset[i] = anchorDist; // maximum possible value
}
}
// ---------- init ftab ------------------
// at first, clear values in ftab
for (i = 0; i < 66049; i++)
ftab[i] = 0;
c1 = text[this.start + 0];
for (i = 1; i <= textSize; i++) {
c2 = text[this.start + i];
ftab[(c1 << 8) + c2]++;
c1 = c2;
}
for (i = 1; i < 66049; i++)
ftab[i] += ftab[i - 1];
// -------- sort suffixes considering only the first two chars
c1 = text[this.start + 0];
for (i = 0; i < textSize; i++) {
c2 = text[this.start + i + 1];
j = (c1 << 8) + c2;
c1 = c2;
ftab[j]--;
suffixArray[ftab[j]] = i;
}
/* decide on the running order */
calculateRunningOrder();
for (i = 0; i < 257; i++) {
bigDone[i] = false;
}
/* Really do the suffix sorting */
for (i = 0; i <= 256; i++) {
/*--
Process big buckets, starting with the least full.
--*/
ss = runningOrder[i];
/*--
Complete the big bucket [ss] by sorting
any unsorted small buckets [ss, j]. Hopefully
previous pointer-scanning phases have already
completed many of the small buckets [ss, j], so
we don't have to sort them at all.
--*/
for (j = 0; j <= 256; j++) {
if (j != ss) {
sb = (ss << 8) + j;
if ((ftab[sb] & SETMASK) == 0) {
int lo = ftab[sb] & CLEARMASK;
int hi = (ftab[sb + 1] & CLEARMASK) - 1;
if (hi > lo) {
shallowSort(lo, hi - lo + 1);
numQSorted += (hi - lo + 1);
}
}
ftab[sb] |= SETMASK;
}
}
{
for (j = 0; j <= 256; j++) {
copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK;
copyEnd[j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
}
// take care of the virtual -1 char in position textSize+1
if (ss == 0) {
k = textSize - 1;
c1 = text[this.start + k];
if (!bigDone[c1])
suffixArray[copyStart[c1]++] = k;
}
for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
k = suffixArray[j] - 1;
if (k < 0)
continue;
c1 = text[this.start + k];
if (!bigDone[c1])
suffixArray[copyStart[c1]++] = k;
}
for (j = (ftab[(ss + 1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
k = suffixArray[j] - 1;
if (k < 0)
continue;
c1 = text[this.start + k];
if (!bigDone[c1])
suffixArray[copyEnd[c1]--] = k;
}
}
for (j = 0; j <= 256; j++)
ftab[(j << 8) + ss] |= SETMASK;
bigDone[ss] = true;
}// endfor
return suffixArray;
}
/**
* This is the multikey quicksort from bentley-sedgewick modified so that it stops recursion when depth reaches
* {@link #SHALLOW_LIMIT} (that is when two or more suffixes have {@link #SHALLOW_LIMIT} chars in common).
*/
private void shallowSort(int a, int n) {
// call multikey quicksort
// skip 2 chars since suffixes come from the same bucket
shallowMkq32(a, n, 2);
}
/**
* recursive multikey quicksort from Bentley-Sedgewick.
*
* Stops when text_depth reaches {@link #SHALLOW_LIMIT} that is when we have found that the current set of strings
* have {@link #SHALLOW_LIMIT} chars in common
*/
private void shallowMkq32(int a, int n, int text_depth) {
int partval, val;
int pa = 0, pb = 0, pc = 0, pd = 0, pl = 0, pm = 0, pn = 0;// pointers
int d, r;
int next_depth;// text pointer
boolean repeatFlag = true;
// ---- On small arrays use insertions sort
if (n < MK_QS_TRESH) {
shallowInssortLcp(a, n, text_depth);
return;
}
// ----------- choose pivot --------------
while (repeatFlag) {
repeatFlag = false;
pl = a;
pm = a + (n / 2);
pn = a + (n - 1);
if (n > 30) { // On big arrays, pseudomedian of 9
d = (n / 8);
pl = med3(pl, pl + d, pl + 2 * d, text_depth);
pm = med3(pm - d, pm, pm + d, text_depth);
pn = med3(pn - 2 * d, pn - d, pn, text_depth);
}
pm = med3(pl, pm, pn, text_depth);
swap2(a, pm);
partval = ptr2char32(a, text_depth);
pa = pb = a + 1;
pc = pd = a + n - 1;
// -------- partition -----------------
for (; ; ) {
while (pb <= pc && (val = ptr2char32(pb, text_depth)) <= partval) {
if (val == partval) {
swap2(pa, pb);
pa++;
}
pb++;
}
while (pb <= pc && (val = ptr2char32(pc, text_depth)) >= partval) {
if (val == partval) {
swap2(pc, pd);
pd--;
}
pc--;
}
if (pb > pc)
break;
swap2(pb, pc);
pb++;
pc--;
}
if (pa > pd) {
// all values were equal to partval: make it simpler
if ((next_depth = text_depth + 4) >= SHALLOW_LIMIT) {
helpedSort(a, n, next_depth);
return;
} else {
text_depth = next_depth;
repeatFlag = true;
}
}
}
// partition a[] into the values smaller, equal, and larger that partval
pn = a + n;
r = min(pa - a, pb - pa);
vecswap2(a, pb - r, r);
r = min(pd - pc, pn - pd - 1);
vecswap2(pb, pn - r, r);
// --- sort smaller strings -------
if ((r = pb - pa) > 1)
shallowMkq32(a, r, text_depth);
// --- sort strings starting with partval -----
if ((next_depth = text_depth + 4) < SHALLOW_LIMIT)
shallowMkq32(a + r, pa - pd + n - 1, next_depth);
else
helpedSort(a + r, pa - pd + n - 1, next_depth);
if ((r = pd - pc) > 1)
shallowMkq32(a + n - r, r, text_depth);
}
private void vecswap2(int a, int b, int n) {
while (n-- > 0) {
int t = suffixArray[a];
suffixArray[a++] = suffixArray[b];
suffixArray[b++] = t;
}
}
private static int min(int i, int j) {
return i < j ? i : j;
}
/**
* this is the insertion sort routine called by multikey-quicksort for sorting small groups. During insertion sort
* the comparisons are done calling cmp_unrolled_shallow_lcp() and two strings are equal if the coincides for
* SHALLOW_LIMIT characters. After this first phase we sort groups of "equal_string" using helped_sort().
*
*/
private void shallowInssortLcp(int a, int n, int text_depth) {
int i, j, j1, lcp_new, r, ai, lcpi;
int cmp_from_limit;
int text_depth_ai;// pointer
// --------- initialize ----------------
lcpAux[0] = -1; // set lcp[-1] = -1
for (i = 0; i < n; i++) {
lcpAux[lcp + i] = 0;
}
cmp_from_limit = SHALLOW_LIMIT - text_depth;
// ----- start insertion sort -----------
for (i = 1; i < n; i++) {
ai = suffixArray[a + i];
lcpi = 0;
text_depth_ai = ai + text_depth;
j = i;
j1 = j - 1; // j1 is a shorhand for j-1
while (true) {
// ------ compare ai with a[j-1] --------
cmpLeft = cmp_from_limit - lcpi;
r = cmpUnrolledShallowLcp(lcpi + suffixArray[a + j1] + text_depth, lcpi
+ text_depth_ai);
lcp_new = cmp_from_limit - cmpLeft; // lcp between ai and a[j1]
assert (r != 0 || lcp_new >= cmp_from_limit);
if (r <= 0) { // we have a[j-1] <= ai
lcpAux[lcp + j1] = lcp_new; // ai will be written in a[j]; update
// lcp[j-1]
break;
}
// --- we have a[j-1]>ai. a[j-1] and maybe other will be moved down
// --- use lcp to move down as many elements of a[] as possible
lcpi = lcp_new;
do {
suffixArray[a + j] = suffixArray[a + j1]; // move down a[j-1]
lcpAux[lcp + j] = lcpAux[lcp + j1]; // move down lcp[j-1]
j = j1;
j1--; // update j and j1=j-1
} while (lcpi < lcpAux[lcp + j1]); // recall that lcp[-1]=-1
if (lcpi > lcpAux[lcp + j1])
break; // ai will be written in position j
// if we get here lcpi==lcp[j1]: we will compare them at next iteration
} // end for(j=i ...
suffixArray[a + j] = ai;
lcpAux[lcp + j] = lcpi;
} // end for(i=1 ...
// ----- done with insertion sort. now sort groups of equal strings
for (i = 0; i < n - 1; i = j + 1) {
for (j = i; j < n; j++)
if (lcpAux[lcp + j] < cmp_from_limit)
break;
if (j - i > 0)
helpedSort(a + i, j - i + 1, SHALLOW_LIMIT);
}
}
/**
* Function to compare two strings originating from the *b1 and *b2 The size of the unrolled loop must be at most
* equal to the costant CMP_OVERSHOOT defined in common.h When the function is called cmpLeft must contain the
* maximum number of comparisons the algorithm can do before returning 0 (equal strings) At exit cmpLeft has been
* decreased by the # of comparisons done
*/
private int cmpUnrolledShallowLcp(int b1, int b2) {
int c1, c2;
// execute blocks of 16 comparisons until a difference
// is found or we run out of the string
do {
// 1
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
return c1 - c2;
}
b1++;
b2++;
// 2
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 1;
return c1 - c2;
}
b1++;
b2++;
// 3
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 2;
return c1 - c2;
}
b1++;
b2++;
// 4
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 3;
return c1 - c2;
}
b1++;
b2++;
// 5
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 4;
return c1 - c2;
}
b1++;
b2++;
// 6
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 5;
return c1 - c2;
}
b1++;
b2++;
// 7
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 6;
return c1 - c2;
}
b1++;
b2++;
// 8
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 7;
return c1 - c2;
}
b1++;
b2++;
// 9
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 8;
return c1 - c2;
}
b1++;
b2++;
// 10
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 9;
return c1 - c2;
}
b1++;
b2++;
// 11
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 10;
return c1 - c2;
}
b1++;
b2++;
// 12
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 11;
return c1 - c2;
}
b1++;
b2++;
// 13
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 12;
return c1 - c2;
}
b1++;
b2++;
// 14
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 13;
return c1 - c2;
}
b1++;
b2++;
// 15
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 14;
return c1 - c2;
}
b1++;
b2++;
// 16
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpLeft -= 15;
return c1 - c2;
}
b1++;
b2++;
// if we have done enough comparisons the strings are considered equal
cmpLeft -= 16;
if (cmpLeft <= 0)
return 0;
// assert( b1 0) { // anchor <= a[i] < (sorted suffix)
if (curr_sb != getSmallBucket(text_pos + diff)) {
if (diff < min_forw_offset) {
min_forw_offset = diff;
best_forw_anchor = anchor;
forw_anchor_index = i;
}
} else { // the sorted suffix belongs to the same bucket of a[0]..a[n-1]
if (diff < min_forw_offset_buc) {
min_forw_offset_buc = diff;
best_forw_anchor_buc = anchor;
forw_anchor_index_buc = i;
}
}
} else { // diff<0 => anchor <= (sorted suffix) < a[i]
if (diff > max_back_offset) {
max_back_offset = diff;
best_back_anchor = anchor;
back_anchor_index = i;
}
// try to find a sorted suffix > a[i] by looking at next anchor
aoffset = anchorOffset[++anchor];
if (aoffset < anchorDist) {
diff = anchorDist + aoffset - toffset;
assert (diff > 0);
if (curr_sb != getSmallBucket(text_pos + diff)) {
if (diff < min_forw_offset) {
min_forw_offset = diff;
best_forw_anchor = anchor;
forw_anchor_index = i;
}
} else {
if (diff < min_forw_offset_buc) {
min_forw_offset_buc = diff;
best_forw_anchor_buc = anchor;
forw_anchor_index_buc = i;
}
}
}
}
}
}
// ------ if forward anchor_sort is possible, do it! --------
if (best_forw_anchor >= 0 && min_forw_offset < depth - 1) {
anchor_pos = suffixArray[a + forw_anchor_index] + min_forw_offset;
anchor_rank = anchorRank[best_forw_anchor];
generalAnchorSort(a, n, anchor_pos, anchor_rank, min_forw_offset);
if (anchorDist > 0)
updateAnchors(a, n);
return;
}
boolean fail = false;
if (best_back_anchor >= 0) {
int T0, Ti;// text pointers
int j;
// make sure that the offset is legal for all a[i]
for (i = 0; i < n; i++) {
if (suffixArray[a + i] + max_back_offset < 0)
fail = true;
// goto fail; // illegal offset, give up
}
// make sure that a[0] .. a[n-1] are preceded by the same substring
T0 = suffixArray[a];
for (i = 1; i < n; i++) {
Ti = suffixArray[a + i];
for (j = max_back_offset; j <= -1; j++)
if (text[this.start + T0 + j] != text[this.start + Ti + j])
fail = true;
// goto fail; // mismatch, give up
}
if (!fail) {
// backward anchor sorting is possible
anchor_pos = suffixArray[a + back_anchor_index] + max_back_offset;
anchor_rank = anchorRank[best_back_anchor];
generalAnchorSort(a, n, anchor_pos, anchor_rank, max_back_offset);
if (anchorDist > 0)
updateAnchors(a, n);
return;
}
}
if (fail) {
if (best_forw_anchor_buc >= 0 && min_forw_offset_buc < depth - 1) {
int equal = 0, lower = 0, upper = 0;
anchor_pos = suffixArray[a + forw_anchor_index_buc] + min_forw_offset_buc;
anchor_rank = anchorRank[best_forw_anchor_buc];
// establish how many suffixes can be sorted using anchor_sort()
SplitGroupResult res = splitGroup(a, n, depth, min_forw_offset_buc,
forw_anchor_index_buc, lower);
equal = res.equal;
lower = res.lower;
if (equal == n) {
generalAnchorSort(a, n, anchor_pos, anchor_rank, min_forw_offset_buc);
} else {
// -- a[0] ... a[n-1] are split into 3 groups: lower, equal, upper
upper = n - equal - lower;
// printf("Warning! lo=%d eq=%d up=%d a=%x\n",lower,equal,upper,(int)a);
// sort the equal group
if (equal > 1)
generalAnchorSort(a + lower, equal, anchor_pos, anchor_rank,
min_forw_offset_buc);
// sort upper and lower groups using deep_sort
if (lower > 1)
pseudoOrDeepSort(a, lower, depth);
if (upper > 1)
pseudoOrDeepSort(a + lower + equal, upper, depth);
} // end if(equal==n) ... else
if (anchorDist > 0)
updateAnchors(a, n);
return;
} // end hard case
}
// ---------------------------------------------------------------
// If we get here it means that everything failed
// In this case we simply deep_sort a[0] ... a[n-1]
// ---------------------------------------------------------------
pseudoOrDeepSort(a, n, depth);
}
/**
* This function takes as input an array a[0] .. a[n-1] of suffixes which share the first "depth" chars. "pivot" in
* an index in 0..n-1 and offset and integer>0. The function splits a[0] .. a[n-1] into 3 groups: first the suffixes
* which are smaller than a[pivot], then those which are equal to a[pivot] and finally those which are greater than
* a[pivot]. Here, smaller, equal, larger refer to a lexicographic ordering limited to the first depth+offest chars
* (since the first depth chars are equal we only look at the chars in position depth, depth+1, ... depth+offset-1).
* The function returns the number "num" of suffixes equal to a[pivot], and stores in *first the first of these
* suffixes. So at the end the smaller suffixes are in a[0] ... a[first-1], the equal suffixes in a[first] ...
* a[first+num-1], the larger suffixes in a[first+num] ... a[n-1] The splitting is done using a modified mkq()
*/
private SplitGroupResult splitGroup(int a, int n, int depth, int offset, int pivot, int first) {
int r, partval;
int pa, pb, pc, pd, pa_old, pd_old;// pointers
int pivot_pos;
int text_depth, text_limit;// pointers
// --------- initialization ------------------------------------
pivot_pos = suffixArray[a + pivot]; // starting position in T[] of pivot
text_depth = depth;
text_limit = text_depth + offset;
// -------------------------------------------------------------
// In the following for() loop:
// [pa ... pd] is the current working region,
// pb moves from pa towards pd
// pc moves from pd towards pa
// -------------------------------------------------------------
pa = a;
pd = a + n - 1;
for (; pa != pd && (text_depth < text_limit); text_depth++) {
// ------ the pivot char is text[this.start + pivot_pos+depth] where
// depth = text_depth-text. This is text_depth[pivot_pos]
partval = text[this.start + text_depth + pivot_pos];
// ----- partition ------------
pb = pa_old = pa;
pc = pd_old = pd;
for (; ; ) {
while (pb <= pc && (r = ptr2char(pb, text_depth) - partval) <= 0) {
if (r == 0) {
swap2(pa, pb);
pa++;
}
pb++;
}
while (pb <= pc && (r = ptr2char(pc, text_depth) - partval) >= 0) {
if (r == 0) {
swap2(pc, pd);
pd--;
}
pc--;
}
if (pb > pc)
break;
swap2(pb, pc);
pb++;
pc--;
}
r = min(pa - pa_old, pb - pa);
vecswap2(pa_old, pb - r, r);
r = min(pd - pc, pd_old - pd);
vecswap2(pb, pd_old + 1 - r, r);
// ------ compute new boundaries -----
pa = pa_old + (pb - pa); // there are pb-pa chars < partval
pd = pd_old - (pd - pc); // there are pd-pc chars > partval
}
first = pa - a; // index in a[] of the first suf. equal to pivot
// return pd-pa+1; // return number of suffixes equal to pivot
return new SplitGroupResult(pd - pa + 1, first);
}
/**
* given a SORTED array of suffixes a[0] .. a[n-1] updates anchorRank[] and anchorOffset[]
*/
private void updateAnchors(int a, int n) {
int i, anchor, toffset, aoffset, text_pos;
for (i = 0; i < n; i++) {
text_pos = suffixArray[a + i];
// get anchor preceeding text_pos=a[i]
anchor = text_pos / anchorDist;
toffset = text_pos % anchorDist; // distance of a[i] from anchor
aoffset = anchorOffset[anchor]; // dist of sorted suf from anchor
if (toffset < aoffset) {
anchorOffset[anchor] = toffset;
anchorRank[anchor] = a + i;
}
}
}
/**
* This routines sorts a[0] ... a[n-1] using the fact that in their common prefix, after offset characters, there is
* a suffix whose rank is known. In this routine we call this suffix anchor (and we denote its position and rank
* with anchor_pos and anchor_rank respectively) but it is not necessarily an anchor (=does not necessarily starts
* at position multiple of anchorDist) since this function is called by pseudo_anchor_sort(). The routine works by
* scanning the suffixes before and after the anchor in order to find (and mark) those which are suffixes of a[0]
* ... a[n-1]. After that, the ordering of a[0] ... a[n-1] is derived with a sigle scan of the marked
* suffixes.*******************************************************************
*/
private void generalAnchorSort(int a, int n, int anchor_pos, int anchor_rank, int offset) {
int sb, lo, hi;
int curr_lo, curr_hi, to_be_found, i, j;
int item;
int ris;
// void *ris;
/* ---------- get bucket of anchor ---------- */
sb = getSmallBucket(anchor_pos);
lo = bucketFirst(sb);
hi = bucketLast(sb);
// ------ sort pointers a[0] ... a[n-1] as plain integers
// qsort(a, n, sizeof(Int32), integer_cmp);
Arrays.sort(suffixArray, a, a + n);
// ------------------------------------------------------------------
// now we scan the bucket containing the anchor in search of suffixes
// corresponding to the ones we have to sort. When we find one of
// such suffixes we mark it. We go on untill n sfx's have been marked
// ------------------------------------------------------------------
curr_hi = curr_lo = anchor_rank;
mark(curr_lo);
// scan suffixes preceeding and following the anchor
for (to_be_found = n - 1; to_be_found > 0; ) {
// invariant: the next positions to check are curr_lo-1 and curr_hi+1
assert (curr_lo > lo || curr_hi < hi);
while (curr_lo > lo) {
item = suffixArray[--curr_lo] - offset;
ris = Arrays.binarySearch(suffixArray, a, a + n, item);
// ris = bsearch(&item,a,n,sizeof(Int32), integer_cmp);
if (ris != 0) {
mark(curr_lo);
to_be_found--;
} else
break;
}
while (curr_hi < hi) {
item = suffixArray[++curr_hi] - offset;
ris = Arrays.binarySearch(suffixArray, a, a + n, item);
if (ris != 0) {
mark(curr_hi);
to_be_found--;
} else
break;
}
}
// sort a[] using the marked suffixes
for (j = 0, i = curr_lo; i <= curr_hi; i++)
if (isMarked(i)) {
unmark(i);
suffixArray[a + j++] = suffixArray[i] - offset;
}
}
/**
*
*/
private void unmark(int i) {
suffixArray[i] &= ~MARKER;
}
/**
*
*/
private boolean isMarked(int i) {
return (suffixArray[i] & MARKER) != 0;
}
/**
*
*/
private void mark(int i) {
suffixArray[i] |= MARKER;
}
/**
*
*/
private int bucketLast(int sb) {
return (ftab[sb + 1] & CLEARMASK) - 1;
}
/**
*
*/
private int bucketFirst(int sb) {
return ftab[sb] & CLEARMASK;
}
/**
*
*/
private int bucketSize(int sb) {
return (ftab[sb + 1] & CLEARMASK) - (ftab[sb] & CLEARMASK);
}
/**
*
*/
private int getSmallBucket(int pos) {
return (text[this.start + pos] << 8) + text[this.start + pos + 1];
}
/**
*
*/
@SuppressWarnings("unused")
private void pseudoOrDeepSort(int a, int n, int depth) {
int offset, text_pos, sb, pseudo_anchor_pos, max_offset, size;
// ------- search for a useful pseudo-anchor -------------
if (MAX_PSEUDO_ANCHOR_OFFSET > 0) {
max_offset = min(depth - 1, MAX_PSEUDO_ANCHOR_OFFSET);
text_pos = suffixArray[a];
for (offset = 1; offset < max_offset; offset++) {
pseudo_anchor_pos = text_pos + offset;
sb = getSmallBucket(pseudo_anchor_pos);
// check if pseudo_anchor is in a sorted bucket
if (isSortedBucket(sb)) {
size = bucketSize(sb); // size of group
if (size > B2G_RATIO * n)
continue; // discard large groups
// sort a[0] ... a[n-1] using pseudo_anchor
pseudoAnchorSort(a, n, pseudo_anchor_pos, offset);
return;
}
}
}
deepSort(a, n, depth);
}
/**
*
*/
private boolean isSortedBucket(int sb) {
return (ftab[sb] & SETMASK) != 0;
}
/**
* routine for deep-sorting the suffixes a[0] ... a[n-1] knowing that they have a common prefix of length "depth"
*/
private void deepSort(int a, int n, int depth) {
int blind_limit;
blind_limit = textSize / BLIND_SORT_RATIO;
if (n <= blind_limit)
blindSsort(a, n, depth); // small_group
else
qsUnrolledLcp(a, n, depth, blind_limit);
}
/**
* ternary quicksort (seward-like) with lcp information
*/
private void qsUnrolledLcp(int a, int n, int depth, int blind_limit) {
int text_depth, text_pos_pivot;// pointers
int[] stack_lo = new int[STACK_SIZE];
int[] stack_hi = new int[STACK_SIZE];
int[] stack_d = new int[STACK_SIZE];
int sp, r, r3, med;
int i, j, lo, hi, ris, lcp_lo, lcp_hi;
// ----- init quicksort --------------
r = sp = 0;
// Pushd(0,n-1,depth);
stack_lo[sp] = 0;
stack_hi[sp] = n - 1;
stack_d[sp] = depth;
sp++;
// end Pushd
// ----- repeat untill stack is empty ------
while (sp > 0) {
assert (sp < STACK_SIZE);
// Popd(lo,hi,depth);
sp--;
lo = stack_lo[sp];
hi = stack_hi[sp];
depth = stack_d[sp];
// end popd
text_depth = depth;
// --- use shellsort for small groups
if (hi - lo < blind_limit) {
blindSsort(a + lo, hi - lo + 1, depth);
continue;
}
/*
* Random partitioning. Guidance for the magic constants 7621 and 32768 is
* taken from Sedgewick's algorithms book, chapter 35.
*/
r = ((r * 7621) + 1) % 32768;
r3 = r % 3;
if (r3 == 0)
med = lo;
else if (r3 == 1)
med = (lo + hi) >> 1;
else
med = hi;
// --- partition ----
swap(med, hi, a); // put the pivot at the right-end
text_pos_pivot = text_depth + suffixArray[a + hi];
i = lo - 1;
j = hi;
lcp_lo = lcp_hi = Integer.MAX_VALUE;
while (true) {
while (++i < hi) {
ris = cmpUnrolledLcp(text_depth + suffixArray[a + i], text_pos_pivot);
if (ris > 0) {
if (cmpDone < lcp_hi)
lcp_hi = cmpDone;
break;
} else if (cmpDone < lcp_lo)
lcp_lo = cmpDone;
}
while (--j > lo) {
ris = cmpUnrolledLcp(text_depth + suffixArray[a + j], text_pos_pivot);
if (ris < 0) {
if (cmpDone < lcp_lo)
lcp_lo = cmpDone;
break;
} else if (cmpDone < lcp_hi)
lcp_hi = cmpDone;
}
if (i >= j)
break;
swap(i, j, a);
}
swap(i, hi, a); // put pivot at the middle
// --------- insert subproblems in stack; smallest last
if (i - lo < hi - i) {
// Pushd(i + 1, hi, depth + lcp_hi);
stack_lo[sp] = i + 1;
stack_hi[sp] = hi;
stack_d[sp] = depth + lcp_hi;
sp++;
// end pushd
if (i - lo > 1) {
// Pushd(lo, i - 1, depth + lcp_lo);
stack_lo[sp] = lo;
stack_hi[sp] = i - 1;
stack_d[sp] = depth + lcp_lo;
sp++;
// end push
}
} else {
// Pushd(lo, i - 1, depth + lcp_lo);
stack_lo[sp] = lo;
stack_hi[sp] = i - 1;
stack_d[sp] = depth + lcp_lo;
sp++;
// end pushd
if (hi - i > 1) {
// Pushd(i + 1, hi, depth + lcp_hi);
stack_lo[sp] = i + 1;
stack_hi[sp] = hi;
stack_d[sp] = depth + lcp_hi;
sp++;
// end pushd
}
}
}
}
/**
* Function to compare two strings originating from the *b1 and *b2 The size of the unrolled loop must be at most
* equal to the costant CMP_OVERSHOOT defined in common.h the function return the result of the comparison (+ or -)
* and writes in cmpDone the number of successfull comparisons done
*/
private int cmpUnrolledLcp(int b1, int b2) {
int c1, c2;
cmpDone = 0;
// execute blocks of 16 comparisons untill a difference
// is found or we run out of the string
do {
// 1
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
return (c1 - c2);
}
b1++;
b2++;
// 2
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 1;
return (c1 - c2);
}
b1++;
b2++;
// 3
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 2;
return (c1 - c2);
}
b1++;
b2++;
// 4
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 3;
return (c1 - c2);
}
b1++;
b2++;
// 5
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 4;
return (c1 - c2);
}
b1++;
b2++;
// 6
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 5;
return (c1 - c2);
}
b1++;
b2++;
// 7
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 6;
return (c1 - c2);
}
b1++;
b2++;
// 8
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 7;
return (c1 - c2);
}
b1++;
b2++;
// 9
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 8;
return (c1 - c2);
}
b1++;
b2++;
// 10
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 9;
return (c1 - c2);
}
b1++;
b2++;
// 11
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 10;
return (c1 - c2);
}
b1++;
b2++;
// 12
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 11;
return (c1 - c2);
}
b1++;
b2++;
// 13
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 12;
return (c1 - c2);
}
b1++;
b2++;
// 14
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 13;
return (c1 - c2);
}
b1++;
b2++;
// 15
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 14;
return (c1 - c2);
}
b1++;
b2++;
// 16
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmpDone += 15;
return (c1 - c2);
}
b1++;
b2++;
cmpDone += 16;
} while (b1 < textSize && b2 < textSize);
return b2 - b1;
}
/**
*
*/
private void swap(int i, int j, int a) {
int tmp = suffixArray[a + i];
suffixArray[a + i] = suffixArray[a + j];
suffixArray[a + j] = tmp;
}
/**
* routine for deep-sorting the suffixes a[0] ... a[n-1] knowing that they have a common prefix of length "depth"
*/
private void blindSsort(int a, int n, int depth) {
int i, j, aj, lcp;
Node nh, root, h;
// ---- sort suffixes in order of increasing length
// qsort(a, n, sizeof(Int32), neg_integer_cmp);
Arrays.sort(suffixArray, a, a + n);
for (int left = 0, right = n - 1; left < right; left++, right--) {
// exchange the first and last
int temp = suffixArray[a + left];
suffixArray[a + left] = suffixArray[a + right];
suffixArray[a + right] = temp;
}
// --- skip suffixes which have already reached the end-of-text
for (j = 0; j < n; j++)
if (suffixArray[a + j] + depth < textSize)
break;
if (j >= n - 1)
return; // everything is already sorted!
// ------ init stack -------
// stack = (node **) malloc(n*sizeof(node *));
// ------- init root with the first unsorted suffix
nh = new Node();
nh.skip = -1;
nh.right = null;
// nh.down = (void *) a[j];
nh.downInt = suffixArray[a + j];
root = nh;
// ------- insert suffixes a[j+1] ... a[n-1]
for (i = j + 1; i < n; i++) {
h = findCompanion(root, suffixArray[a + i]);
aj = h.downInt;
lcp = compareSuffixes(aj, suffixArray[a + i], depth);
insertSuffix(root, suffixArray[a + i], lcp, text[this.start + aj + lcp]);
}
// ---- traverse the trie and get suffixes in lexicographic order
aux = a;
auxWritten = j;
traverseTrie(root);
}
/**
* this procedures traverse the trie in depth first order so that the suffixes (stored in the leaf) are recovered in
* lexicographic order
*/
private void traverseTrie(Node h) {
Node p, nextp;
if (h.skip < 0)
suffixArray[aux + auxWritten++] = h.downInt;
else {
p = h.down;
do {
nextp = p.right;
if (nextp != null) {
// if there are 2 nodes with equal keys
// they must be considered in inverted order
if (nextp.key == p.key) {
traverseTrie(nextp);
traverseTrie(p);
p = nextp.right;
continue;
}
}
traverseTrie(p);
p = nextp;
} while (p != null);
}
}
/**
* insert a suffix in the trie rooted at *p. we know that the trie already contains a string which share the first n
* chars with suf
*/
private void insertSuffix(Node h, int suf, int n, int mmchar) {
int c, s;
Node p, pp;
s = suf;
// --------- insert a new node before node *h if necessary
if (h.skip != n) {
p = new Node();
p.key = mmchar;
p.skip = h.skip; // p inherits skip and children of *h
p.down = h.down;
p.downInt = h.downInt;
p.right = null;
h.skip = n;
h.down = p; // now *h has p as the only child
}
// -------- search the position of s[n] among *h offsprings
c = text[this.start + s + n];
pp = h.down;
while (pp != null) {
if (pp.key >= c)
break;
pp = pp.right;
}
// ------- insert new node containing suf
p = new Node();
p.skip = -1;
p.key = c;
p.right = pp;
pp = p;
p.downInt = suf;
return;
}
/**
* this function returns the lcp between suf1 and suf2 (that is returns n such that suf1[n]!=suf2[n] but
* suf1[i]==suf2[i] for i=0..n-1 However, it is possible that suf1 is a prefix of suf2 (not vice-versa because of
* the initial sorting of suffixes in order of descreasing length) in this case the function returns
* n=length(suf1)-1. So in this case suf1[n]==suf2[n] (and suf1[n+1] does not exists).
*/
private int compareSuffixes(int suf1, int suf2, int depth) {
int limit;
int s1, s2;
s1 = depth + suf1;
s2 = depth + suf2;
limit = textSize - suf1 - depth;
return depth + getLcpUnrolled(s1, s2, limit);
}
/**
*
*/
private int getLcpUnrolled(int b1, int b2, int cmp_limit) {
int cmp2do;
int c1, c2;
// execute blocks of 16 comparisons untill a difference
// is found or we reach cmp_limit comparisons
cmp2do = cmp_limit;
do {
// 1
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
break;
}
b1++;
b2++;
// 2
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 1;
break;
}
b1++;
b2++;
// 3
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 2;
break;
}
b1++;
b2++;
// 4
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 3;
break;
}
b1++;
b2++;
// 5
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 4;
break;
}
b1++;
b2++;
// 6
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 5;
break;
}
b1++;
b2++;
// 7
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 6;
break;
}
b1++;
b2++;
// 8
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 7;
break;
}
b1++;
b2++;
// 9
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 8;
break;
}
b1++;
b2++;
// 10
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 9;
break;
}
b1++;
b2++;
// 11
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 10;
break;
}
b1++;
b2++;
// 12
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 11;
break;
}
b1++;
b2++;
// 13
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 12;
break;
}
b1++;
b2++;
// 14
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 13;
break;
}
b1++;
b2++;
// 15
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 14;
break;
}
b1++;
b2++;
// 16
c1 = text[this.start + b1];
c2 = text[this.start + b2];
if (c1 != c2) {
cmp2do -= 15;
break;
}
b1++;
b2++;
cmp2do -= 16;
} while (cmp2do > 0);
if (cmp_limit - cmp2do < cmp_limit)
return cmp_limit - cmp2do;
return cmp_limit - 1;
}
/**
* this function traverses the trie rooted at head following the string s. Returns the leaf "corresponding" to the
* string s
*/
private Node findCompanion(Node head, int s) {
int c;
Node p;
int t;
stackSize = 0; // init stack
while (head.skip >= 0) {
stack[stackSize++] = head;
t = head.skip;
if (s + t >= textSize) // s[t] does not exist: mismatch
return getLeaf(head);
c = text[this.start + s + t];
p = head.down;
boolean repeat = true;
while (repeat) {
if (c == p.key) { // found branch corresponding to c
head = p;
repeat = false;
} else if (c < p.key) // no branch corresponding to c: mismatch
{
return getLeaf(head);
}
if (repeat && (p = (p.right)) == null) // no other branches: mismatch
{
return getLeaf(head);
}
}
}
stack[stackSize++] = head;
return head;
}
/**
* this function returns a leaf below "head". any leaf will do for the algorithm: we take the easiest to reach
*/
private Node getLeaf(Node head) {
Tools.assertAlways(head.skip >= 0, "");
do {
head = head.down;
} while (head.skip >= 0);
return head;
}
/**
*
*/
@SuppressWarnings("unused")
private void pseudoAnchorSort(int a, int n, int pseudo_anchor_pos, int offset) {
int pseudo_anchor_rank;
// ---------- compute rank ------------
if (UPDATE_ANCHOR_RANKS && anchorDist > 0)
pseudo_anchor_rank = getRankUpdateAnchors(pseudo_anchor_pos);
else
pseudo_anchor_rank = getRank(pseudo_anchor_pos);
// ---------- check rank --------------
assert (suffixArray[pseudo_anchor_rank] == pseudo_anchor_pos);
// ---------- do the sorting ----------
generalAnchorSort(a, n, pseudo_anchor_pos, pseudo_anchor_rank, offset);
}
/**
* compute the rank of the suffix starting at pos. It is required that the suffix is in an already sorted bucket
*/
private int getRank(int pos) {
int sb, lo, hi, j;
sb = getSmallBucket(pos);
if (!isSortedBucket(sb)) {
throw new RuntimeException("Illegal call to get_rank! (get_rank1)");
}
lo = bucketFirst(sb);
hi = bucketLast(sb);
for (j = lo; j <= hi; j++)
if (suffixArray[j] == pos)
return j;
throw new RuntimeException("Illegal call to get_rank! (get_rank2)");
}
/**
* compute the rank of the suffix starting at pos. At the same time check if the rank of the suffixes in the bucket
* containing pos can be used to update some entries in anchorOffset[] and anchorRank[] It is required that the
* suffix is in an already sorted bucket
*/
private int getRankUpdateAnchors(int pos) {
int sb, lo, hi, j, toffset, aoffset, anchor, rank;
// --- get bucket and verify it is a sorted one
sb = getSmallBucket(pos);
if (!(isSortedBucket(sb))) {
throw new RuntimeException("Illegal call to get_rank! (get_rank_update_anchors)");
}
// --- if the bucket has been already ranked just compute rank;
if (bucketRanked[sb] != 0)
return getRank(pos);
// --- rank all the bucket
bucketRanked[sb] = 1;
rank = -1;
lo = bucketFirst(sb);
hi = bucketLast(sb);
for (j = lo; j <= hi; j++) {
// see if we can update an anchor
toffset = suffixArray[j] % anchorDist;
anchor = suffixArray[j] / anchorDist;
aoffset = anchorOffset[anchor]; // dist of sorted suf from anchor
if (toffset < aoffset) {
anchorOffset[anchor] = toffset;
anchorRank[anchor] = j;
}
// see if we have found the rank of pos, if so store it in rank
if (suffixArray[j] == pos) {
assert (rank == -1);
rank = j;
}
}
assert (rank >= 0);
return rank;
}
private void swap2(int a, int b) {
int tmp = suffixArray[a];
suffixArray[a] = suffixArray[b];
suffixArray[b] = tmp;
}
/*
* #define ptr2char32(i) (getword32(*(i) + text_depth))
*/
private int ptr2char32(int a, int depth) {
return getword32(suffixArray[a] + depth);
}
/*
* #define getword32(s) ((unsigned)( (*(s) << 24) | ((*((s)+1)) << 16) \ | ((*((s)+2))
* << 8) | (*((s)+3)) ))
*/
private int getword32(int s) {
return text[this.start + s] << 24 | text[this.start + s + 1] << 16
| text[this.start + s + 2] << 8 | text[this.start + s + 3];
}
private int ptr2char(int i, int text_depth) {
return text[this.start + suffixArray[i] + text_depth];
}
private int med3(int a, int b, int c, int depth) {
int va = ptr2char(a, depth);
int vb = ptr2char(b, depth);
if (va == vb) {
return a;
}
int vc = ptr2char(c, depth);
if (vc == va || vc == vb) {
return c;
}
return va < vb ? (vb < vc ? b : (va < vc ? c : a)) : (vb > vc ? b : (va < vc ? a : c));
}
private void calculateRunningOrder() {
int i, j;
for (i = 0; i <= 256; i++)
runningOrder[i] = i;
{
int vv;
int h = 1;
do
h = 3 * h + 1;
while (h <= 257);
do {
h = h / 3;
for (i = h; i <= 256; i++) {
vv = runningOrder[i];
j = i;
while (bigFreq(runningOrder[j - h]) > bigFreq(vv)) {
runningOrder[j] = runningOrder[j - h];
j = j - h;
if (j <= (h - 1))
break;
}
runningOrder[j] = vv;
}
} while (h != 1);
}
}
/**
*
*/
private int bigFreq(int b) {
return ftab[((b) + 1) << 8] - ftab[(b) << 8];
}
public static void main(String[] args) {
for (int i = 0; i < 5; i++) {
System.gc();
}
int size = 1000000;
final Runtime rt = Runtime.getRuntime();
long before, after;
Node[] nodes = new Node[size];
before = rt.totalMemory() - rt.freeMemory();
for (int i = 0; i < size; i++) {
nodes[i] = new Node();
}
after = rt.totalMemory() - rt.freeMemory();
double a = 1.0 * (after - before) / size;
System.out.println(before + " " + after + " " + size + " " + a);
}
}