Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
eu.lunisolar.magma.func.operator.binary.LLogicalBinaryOperator Maven / Gradle / Ivy
/*
* This file is part of "lunisolar-magma".
*
* (C) Copyright 2014-2019 Lunisolar (http://lunisolar.eu/).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package eu.lunisolar.magma.func.operator.binary;
import javax.annotation.Nonnull; // NOSONAR
import javax.annotation.Nullable; // NOSONAR
import java.util.Comparator; // NOSONAR
import java.util.Objects; // NOSONAR
import eu.lunisolar.magma.basics.*; //NOSONAR
import eu.lunisolar.magma.basics.builder.*; // NOSONAR
import eu.lunisolar.magma.basics.exceptions.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.aType.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.functional.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.functional.type.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.functional.domain.*; // NOSONAR
import eu.lunisolar.magma.func.IA;
import eu.lunisolar.magma.func.SA;
import eu.lunisolar.magma.func.*; // NOSONAR
import eu.lunisolar.magma.func.tuple.*; // NOSONAR
import java.util.function.*; // NOSONAR
import java.util.*; // NOSONAR
import java.lang.reflect.*;
import eu.lunisolar.magma.func.action.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.bi.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.obj.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.tri.*; // NOSONAR
import eu.lunisolar.magma.func.function.*; // NOSONAR
import eu.lunisolar.magma.func.function.conversion.*; // NOSONAR
import eu.lunisolar.magma.func.function.from.*; // NOSONAR
import eu.lunisolar.magma.func.function.to.*; // NOSONAR
import eu.lunisolar.magma.func.operator.binary.*; // NOSONAR
import eu.lunisolar.magma.func.operator.ternary.*; // NOSONAR
import eu.lunisolar.magma.func.operator.unary.*; // NOSONAR
import eu.lunisolar.magma.func.predicate.*; // NOSONAR
import eu.lunisolar.magma.func.supplier.*; // NOSONAR
/**
* Non-throwing functional interface (lambda) LLogicalBinaryOperator for Java 8.
*
* Type: operator
*
* Domain (lvl: 2): boolean a1,boolean a2
*
* Co-domain: boolean
*
*/
@FunctionalInterface
@SuppressWarnings("UnusedDeclaration")
public interface LLogicalBinaryOperator extends MetaInterface.NonThrowing, MetaLogicalOperator, Codomain, Domain2 { // NOSONAR
String DESCRIPTION = "LLogicalBinaryOperator: boolean apply(boolean a1,boolean a2)";
// boolean apply(boolean a1,boolean a2) ;
default boolean apply(boolean a1, boolean a2) {
// return nestingApply(a1,a2);
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
throw Handling.nestCheckedAndThrow(e);
}
}
/**
* Implement this, but call apply(boolean a1,boolean a2)
*/
boolean applyX(boolean a1, boolean a2) throws Throwable;
default boolean tupleApply(LBoolPair args) {
return apply(args.first(), args.second());
}
/** Function call that handles exceptions according to the instructions. */
default boolean handlingApply(boolean a1, boolean a2, HandlingInstructions handling) {
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
throw Handler.handleOrNest(e, handling);
}
}
default LLogicalBinaryOperator handling(HandlingInstructions handling) {
return (a1, a2) -> handlingApply(a1, a2, handling);
}
default boolean apply(boolean a1, boolean a2, @Nonnull ExWMF exF, @Nonnull String newMessage, @Nullable Object... messageParams) {
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
throw Handling.wrap(e, exF, newMessage, messageParams);
}
}
default LLogicalBinaryOperator trying(@Nonnull ExWMF exF, @Nonnull String newMessage, @Nullable Object... messageParams) {
return (a1, a2) -> apply(a1, a2, exF, newMessage, messageParams);
}
default boolean apply(boolean a1, boolean a2, @Nonnull ExWF exF) {
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
throw Handling.wrap(e, exF);
}
}
default LLogicalBinaryOperator trying(@Nonnull ExWF exF) {
return (a1, a2) -> apply(a1, a2, exF);
}
default boolean applyThen(boolean a1, boolean a2, @Nonnull LPredicate handler) {
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
Handling.handleErrors(e);
return handler.test(e);
}
}
default LLogicalBinaryOperator tryingThen(@Nonnull LPredicate handler) {
return (a1, a2) -> applyThen(a1, a2, handler);
}
/** Function call that handles exceptions by always nesting checked exceptions and propagating the others as is. */
default boolean nestingApply(boolean a1, boolean a2) {
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
throw Handling.nestCheckedAndThrow(e);
}
}
/** Function call that handles exceptions by always propagating them as is, even when they are undeclared checked ones. */
default boolean shovingApply(boolean a1, boolean a2) {
try {
return this.applyX(a1, a2);
} catch (Throwable e) { // NOSONAR
throw Handling.shoveIt(e);
}
}
static boolean handlingApply(boolean a1, boolean a2, LLogicalBinaryOperator func, HandlingInstructions handling) { // <-
Null.nonNullArg(func, "func");
return func.handlingApply(a1, a2, handling);
}
static boolean tryApply(boolean a1, boolean a2, LLogicalBinaryOperator func) {
Null.nonNullArg(func, "func");
return func.nestingApply(a1, a2);
}
static boolean tryApply(boolean a1, boolean a2, LLogicalBinaryOperator func, @Nonnull ExWMF exF, @Nonnull String newMessage, @Nullable Object... messageParams) {
Null.nonNullArg(func, "func");
return func.apply(a1, a2, exF, newMessage, messageParams);
}
static boolean tryApply(boolean a1, boolean a2, LLogicalBinaryOperator func, @Nonnull ExWF exF) {
Null.nonNullArg(func, "func");
return func.apply(a1, a2, exF);
}
static boolean tryApplyThen(boolean a1, boolean a2, LLogicalBinaryOperator func, @Nonnull LPredicate handler) {
Null.nonNullArg(func, "func");
return func.applyThen(a1, a2, handler);
}
default boolean failSafeApply(boolean a1, boolean a2, @Nonnull LLogicalBinaryOperator failSafe) {
try {
return apply(a1, a2);
} catch (Throwable e) { // NOSONAR
Handling.handleErrors(e);
return failSafe.apply(a1, a2);
}
}
static boolean failSafeApply(boolean a1, boolean a2, LLogicalBinaryOperator func, @Nonnull LLogicalBinaryOperator failSafe) {
Null.nonNullArg(failSafe, "failSafe");
if (func == null) {
return failSafe.apply(a1, a2);
} else {
return func.failSafeApply(a1, a2, failSafe);
}
}
static LLogicalBinaryOperator failSafe(LLogicalBinaryOperator func, @Nonnull LLogicalBinaryOperator failSafe) {
Null.nonNullArg(failSafe, "failSafe");
return (a1, a2) -> failSafeApply(a1, a2, func, failSafe);
}
default boolean doIf(boolean a1, boolean a2, LAction action) {
Null.nonNullArg(action, "action");
if (apply(a1, a2)) {
action.execute();
return true;
} else {
return false;
}
}
static boolean doIf(boolean a1, boolean a2, @Nonnull LLogicalBinaryOperator predicate, @Nonnull LAction action) {
Null.nonNullArg(predicate, "predicate");
return predicate.doIf(a1, a2, action);
}
static boolean doIf(boolean a1, boolean a2, @Nonnull LLogicalBinaryOperator predicate, @Nonnull LBiBoolConsumer consumer) {
Null.nonNullArg(predicate, "predicate");
return predicate.doIf(a1, a2, consumer);
}
default boolean doIf(boolean a1, boolean a2, @Nonnull LBiBoolConsumer consumer) {
Null.nonNullArg(consumer, "consumer");
if (apply(a1, a2)) {
consumer.accept(a1, a2);
return true;
} else {
return false;
}
}
static void throwIf(boolean a1, boolean a2, LLogicalBinaryOperator pred, ExMF factory, @Nonnull String newMessage, @Nullable Object... messageParams) {
if (pred.apply(a1, a2)) {
throw Handling.create(factory, newMessage, messageParams);
}
}
static void throwIfNot(boolean a1, boolean a2, LLogicalBinaryOperator pred, ExMF factory, @Nonnull String newMessage, @Nullable Object... messageParams) {
if (!pred.apply(a1, a2)) {
throw Handling.create(factory, newMessage, messageParams);
}
}
/** Just to mirror the method: Ensures the result is not null */
default boolean nonNullApply(boolean a1, boolean a2) {
return apply(a1, a2);
}
/** For convenience, boolean operator is also special case of predicate. */
default boolean doTest(boolean a1, boolean a2) {
return apply(a1, a2);
}
/** Returns description of the functional interface. */
@Nonnull
default String functionalInterfaceDescription() {
return LLogicalBinaryOperator.DESCRIPTION;
}
/** From-To. Intended to be used with non-capturing lambda. */
public static void fromTo(int min_i, int max_i, boolean a1, boolean a2, LLogicalBinaryOperator func) {
Null.nonNullArg(func, "func");
if (min_i <= max_i) {
for (int i = min_i; i <= max_i; i++) {
func.apply(a1, a2);
}
} else {
for (int i = min_i; i >= max_i; i--) {
func.apply(a1, a2);
}
}
}
/** From-To. Intended to be used with non-capturing lambda. */
public static void fromTill(int min_i, int max_i, boolean a1, boolean a2, LLogicalBinaryOperator func) {
Null.nonNullArg(func, "func");
if (min_i <= max_i) {
for (int i = min_i; i < max_i; i++) {
func.apply(a1, a2);
}
} else {
for (int i = min_i; i > max_i; i--) {
func.apply(a1, a2);
}
}
}
/** From-To. Intended to be used with non-capturing lambda. */
public static void times(int max_i, boolean a1, boolean a2, LLogicalBinaryOperator func) {
if (max_i < 0)
return;
fromTill(0, max_i, a1, a2, func);
}
public default LLogicalOperator lShrink(LLogicalOperator left) {
return a2 -> apply(left.apply(a2), a2);
}
public default LLogicalOperator lShrinkc(boolean a1) {
return a2 -> apply(a1, a2);
}
public static LLogicalOperator lShrinked(LLogicalOperator left, LLogicalBinaryOperator func) {
return func.lShrink(left);
}
public static LLogicalOperator lShrinkedc(boolean a1, LLogicalBinaryOperator func) {
return func.lShrinkc(a1);
}
public default LLogicalOperator rShrink(LLogicalOperator right) {
return a1 -> apply(a1, right.apply(a1));
}
public default LLogicalOperator rShrinkc(boolean a2) {
return a1 -> apply(a1, a2);
}
public static LLogicalOperator rShrinked(LLogicalOperator right, LLogicalBinaryOperator func) {
return func.rShrink(right);
}
public static LLogicalOperator rShrinkedc(boolean a2, LLogicalBinaryOperator func) {
return func.rShrinkc(a2);
}
/** */
public static LLogicalBinaryOperator uncurry(LBoolFunction func) {
return (boolean a1, boolean a2) -> func.apply(a1).apply(a2);
}
/** Captures arguments but delays the evaluation. */
default LBoolSupplier capture(boolean a1, boolean a2) {
return () -> this.apply(a1, a2);
}
/** Creates function that always returns the same value. */
static LLogicalBinaryOperator constant(boolean r) {
return (a1, a2) -> r;
}
/** Captures single parameter function into this interface where only 1st parameter will be used. */
@Nonnull
static LLogicalBinaryOperator apply1st(@Nonnull LLogicalOperator func) {
return (a1, a2) -> func.apply(a1);
}
/** Captures single parameter function into this interface where only 2nd parameter will be used. */
@Nonnull
static LLogicalBinaryOperator apply2nd(@Nonnull LLogicalOperator func) {
return (a1, a2) -> func.apply(a2);
}
/** Convenient method in case lambda expression is ambiguous for the compiler (that might happen for overloaded methods accepting different interfaces). */
@Nonnull
static LLogicalBinaryOperator logicalBinaryOp(final @Nonnull LLogicalBinaryOperator lambda) {
Null.nonNullArg(lambda, "lambda");
return lambda;
}
@Nonnull
static LLogicalBinaryOperator recursive(final @Nonnull LFunction selfLambda) {
final LLogicalBinaryOperatorSingle single = new LLogicalBinaryOperatorSingle();
LLogicalBinaryOperator func = selfLambda.apply(single);
single.target = func;
return func;
}
final class LLogicalBinaryOperatorSingle implements LSingle, LLogicalBinaryOperator {
private LLogicalBinaryOperator target = null;
@Override
public boolean applyX(boolean a1, boolean a2) throws Throwable {
return target.applyX(a1, a2);
}
@Override
public LLogicalBinaryOperator value() {
return target;
}
}
@Nonnull
static LLogicalBinaryOperator logicalBinaryOpThrowing(final @Nonnull ExF exF) {
Null.nonNullArg(exF, "exF");
return (a1, a2) -> {
throw exF.produce();
};
}
@Nonnull
static LLogicalBinaryOperator logicalBinaryOpThrowing(final String message, final @Nonnull ExMF exF) {
Null.nonNullArg(exF, "exF");
return (a1, a2) -> {
throw exF.produce(message);
};
}
static boolean call(boolean a1, boolean a2, final @Nonnull LLogicalBinaryOperator lambda) {
Null.nonNullArg(lambda, "lambda");
return lambda.apply(a1, a2);
}
//
//
//
/** Safe instance. That always returns the same value (as produceBoolean). */
@Nonnull
static LLogicalBinaryOperator safe() {
return LLogicalBinaryOperator::produceBoolean;
}
/** Safe instance supplier. Returns supplier of safe() instance. */
@Nonnull
static LSupplier safeSupplier() {
return () -> safe();
}
/** Safe wrapping. Either argument function is returned (if it is not null) or safe() instance. */
@Nonnull
static LLogicalBinaryOperator safe(final @Nullable LLogicalBinaryOperator other) {
if (other == null) {
return safe();
} else {
return other;
}
}
/** Safe supplier. Either argument supplier is returned (if it is not null) or supplier of safe() instance. */
@Nonnull
static LSupplier safeSupplier(final @Nullable LSupplier supplier) {
if (supplier == null) {
return safeSupplier();
} else {
return supplier;
}
}
//
//
/**
* Returns a predicate that represents the logical negation of this predicate.
*
* @see {@link java.util.function.Predicate#negate}
*/
@Nonnull
default LLogicalBinaryOperator negate() {
return (a1, a2) -> !apply(a1, a2);
}
/**
* Returns a predicate that represents the logical AND of evaluation of this predicate and the argument one.
* @see {@link java.util.function.Predicate#and()}
*/
@Nonnull
default LLogicalBinaryOperator and(@Nonnull LLogicalBinaryOperator other) {
Null.nonNullArg(other, "other");
return (a1, a2) -> apply(a1, a2) && other.apply(a1, a2);
}
/**
* Returns a predicate that represents the logical OR of evaluation of this predicate and the argument one.
* @see {@link java.util.function.Predicate#or}
*/
@Nonnull
default LLogicalBinaryOperator or(@Nonnull LLogicalBinaryOperator other) {
Null.nonNullArg(other, "other");
return (a1, a2) -> apply(a1, a2) || other.apply(a1, a2);
}
/**
* Returns a predicate that represents the logical XOR of evaluation of this predicate and the argument one.
* @see {@link java.util.function.Predicate#or}
*/
@Nonnull
default LLogicalBinaryOperator xor(@Nonnull LLogicalBinaryOperator other) {
Null.nonNullArg(other, "other");
return (a1, a2) -> apply(a1, a2) ^ other.apply(a1, a2);
}
/**
* Creates predicate that evaluates if an object is equal with the argument one.
* @see {@link java.util.function.Predicate#isEqual()
*/
@Nonnull
static LLogicalBinaryOperator isEqual(boolean v1, boolean v2) {
return (a1, a2) -> (a1 == v1) && (a2 == v2);
}
//
/**
* Returns function that applies logical AND operator.
*/
@Nonnull
static LLogicalBinaryOperator and() {
return Boolean::logicalAnd;
}
/**
* Returns function that applies logical OR operator.
*/
@Nonnull
static LLogicalBinaryOperator or() {
return Boolean::logicalOr;
}
/**
* Returns function that applies logical XOR operator.
*/
@Nonnull
static LLogicalBinaryOperator xor() {
return Boolean::logicalXor;
}
//
/** Allows to manipulate the domain of the function. */
@Nonnull
default LLogicalBinaryOperator compose(@Nonnull final LLogicalOperator before1, @Nonnull final LLogicalOperator before2) {
Null.nonNullArg(before1, "before1");
Null.nonNullArg(before2, "before2");
return (v1, v2) -> this.apply(before1.apply(v1), before2.apply(v2));
}
public static LLogicalBinaryOperator composed(@Nonnull final LLogicalOperator before1, @Nonnull final LLogicalOperator before2, LLogicalBinaryOperator after) {
return after.compose(before1, before2);
}
/** Allows to manipulate the domain of the function. */
@Nonnull
default LBiPredicate logicalBinaryOpCompose(@Nonnull final LPredicate super V1> before1, @Nonnull final LPredicate super V2> before2) {
Null.nonNullArg(before1, "before1");
Null.nonNullArg(before2, "before2");
return (v1, v2) -> this.apply(before1.test(v1), before2.test(v2));
}
public static LBiPredicate composed(@Nonnull final LPredicate super V1> before1, @Nonnull final LPredicate super V2> before2, LLogicalBinaryOperator after) {
return after.logicalBinaryOpCompose(before1, before2);
}
//
//
/** Combines two functions together in a order. */
@Nonnull
default LBiBoolFunction then(@Nonnull LBoolFunction extends V> after) {
Null.nonNullArg(after, "after");
return (a1, a2) -> after.apply(this.apply(a1, a2));
}
/** Combines two functions together in a order. */
@Nonnull
default LLogicalBinaryOperator thenToBool(@Nonnull LLogicalOperator after) {
Null.nonNullArg(after, "after");
return (a1, a2) -> after.apply(this.apply(a1, a2));
}
//
//
//
/** Does nothing (LLogicalBinaryOperator) Operator */
public static boolean produceBoolean(boolean a1, boolean a2) {
return Function4U.defaultBoolean;
}
/**
* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
* Thread safety, fail-fast, fail-safety of this method is not expected.
*/
default void forEach(IndexedRead ia1, C1 source1, IndexedRead ia2, C2 source2, LBoolConsumer consumer) {
int size = ia1.size(source1);
LObjIntPredicate oiFunc1 = (LObjIntPredicate) ia1.getter();
size = Integer.min(size, ia2.size(source2));
LObjIntPredicate oiFunc2 = (LObjIntPredicate) ia2.getter();
int i = 0;
for (; i < size; i++) {
boolean a1 = oiFunc1.test(source1, i);
boolean a2 = oiFunc2.test(source2, i);
consumer.accept(this.apply(a1, a2));
}
}
/**
* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
* Thread safety, fail-fast, fail-safety of this method is not expected.
*/
default void iterate(SequentialRead sa1, C1 source1, IndexedRead ia2, C2 source2, LBoolConsumer consumer) {
Object iterator1 = ((LFunction) sa1.adapter()).apply(source1);
LPredicate testFunc1 = (LPredicate) sa1.tester();
LPredicate nextFunc1 = (LPredicate) sa1.supplier();
int size = ia2.size(source2);
LObjIntPredicate oiFunc2 = (LObjIntPredicate) ia2.getter();
int i = 0;
while (testFunc1.test(iterator1) && i < size) {
boolean a1 = nextFunc1.test(iterator1);
boolean a2 = oiFunc2.test(source2, i);
consumer.accept(this.apply(a1, a2));
i++;
}
}
/**
* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
* Thread safety, fail-fast, fail-safety of this method is not expected.
*/
default void iterate(IndexedRead ia1, C1 source1, SequentialRead sa2, C2 source2, LBoolConsumer consumer) {
int size = ia1.size(source1);
LObjIntPredicate oiFunc1 = (LObjIntPredicate) ia1.getter();
Object iterator2 = ((LFunction) sa2.adapter()).apply(source2);
LPredicate testFunc2 = (LPredicate) sa2.tester();
LPredicate nextFunc2 = (LPredicate) sa2.supplier();
int i = 0;
while (i < size && testFunc2.test(iterator2)) {
boolean a1 = oiFunc1.test(source1, i);
boolean a2 = nextFunc2.test(iterator2);
consumer.accept(this.apply(a1, a2));
i++;
}
}
/**
* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
* Thread safety, fail-fast, fail-safety of this method depends highly on the arguments.
*/
default void iterate(SequentialRead sa1, C1 source1, SequentialRead sa2, C2 source2, LBoolConsumer consumer) {
Object iterator1 = ((LFunction) sa1.adapter()).apply(source1);
LPredicate testFunc1 = (LPredicate) sa1.tester();
LPredicate nextFunc1 = (LPredicate) sa1.supplier();
Object iterator2 = ((LFunction) sa2.adapter()).apply(source2);
LPredicate testFunc2 = (LPredicate) sa2.tester();
LPredicate nextFunc2 = (LPredicate) sa2.supplier();
while (testFunc1.test(iterator1) && testFunc2.test(iterator2)) {
boolean a1 = nextFunc1.test(iterator1);
boolean a2 = nextFunc2.test(iterator2);
consumer.accept(this.apply(a1, a2));
}
}
}