All Downloads are FREE. Search and download functionalities are using the official Maven repository.

eu.lunisolar.magma.func.operator.ternary.LTernaryOperator Maven / Gradle / Ivy

There is a newer version: 3.0.0
Show newest version
/*
 * This file is part of "lunisolar-magma".
 *
 * (C) Copyright 2014-2019 Lunisolar (http://lunisolar.eu/).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package eu.lunisolar.magma.func.operator.ternary;

import javax.annotation.Nonnull; // NOSONAR
import javax.annotation.Nullable; // NOSONAR
import java.util.Comparator; // NOSONAR
import java.util.Objects; // NOSONAR
import eu.lunisolar.magma.basics.*; //NOSONAR
import eu.lunisolar.magma.basics.builder.*; // NOSONAR
import eu.lunisolar.magma.basics.exceptions.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.aType.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.functional.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.functional.type.*; // NOSONAR
import eu.lunisolar.magma.basics.meta.functional.domain.*; // NOSONAR
import eu.lunisolar.magma.func.IA;
import eu.lunisolar.magma.func.SA;
import eu.lunisolar.magma.func.*; // NOSONAR
import eu.lunisolar.magma.func.tuple.*; // NOSONAR
import java.util.function.*; // NOSONAR
import java.util.*; // NOSONAR
import java.lang.reflect.*;

import eu.lunisolar.magma.func.action.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.bi.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.obj.*; // NOSONAR
import eu.lunisolar.magma.func.consumer.primitives.tri.*; // NOSONAR
import eu.lunisolar.magma.func.function.*; // NOSONAR
import eu.lunisolar.magma.func.function.conversion.*; // NOSONAR
import eu.lunisolar.magma.func.function.from.*; // NOSONAR
import eu.lunisolar.magma.func.function.to.*; // NOSONAR
import eu.lunisolar.magma.func.operator.binary.*; // NOSONAR
import eu.lunisolar.magma.func.operator.ternary.*; // NOSONAR
import eu.lunisolar.magma.func.operator.unary.*; // NOSONAR
import eu.lunisolar.magma.func.predicate.*; // NOSONAR
import eu.lunisolar.magma.func.supplier.*; // NOSONAR

/**
 * Non-throwing functional interface (lambda) LTernaryOperator for Java 8.
 *
 * Type: operator
 *
 * Domain (lvl: 3): T a1,T a2,T a3
 *
 * Co-domain: T
 *
 */
@FunctionalInterface
@SuppressWarnings("UnusedDeclaration")
public interface LTernaryOperator extends MetaOperator, MetaInterface.NonThrowing, Codomain>, Domain3, a, a>, LTriFunction { // NOSONAR

	String DESCRIPTION = "LTernaryOperator: T apply(T a1,T a2,T a3)";

	default T tupleApply(LTriple args) {
		return apply(args.first(), args.second(), args.third());
	}

	/** Function call that handles exceptions according to the instructions. */
	default T handlingApply(T a1, T a2, T a3, HandlingInstructions handling) {
		try {
			return this.applyX(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			throw Handler.handleOrNest(e, handling);
		}
	}

	default LTernaryOperator handling(HandlingInstructions handling) {
		return (a1, a2, a3) -> handlingApply(a1, a2, a3, handling);
	}

	default T apply(T a1, T a2, T a3, @Nonnull ExWMF exF, @Nonnull String newMessage, @Nullable Object... messageParams) {
		try {
			return this.applyX(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			throw Handling.wrap(e, exF, newMessage, messageParams);
		}
	}

	default LTernaryOperator trying(@Nonnull ExWMF exF, @Nonnull String newMessage, @Nullable Object... messageParams) {
		return (a1, a2, a3) -> apply(a1, a2, a3, exF, newMessage, messageParams);
	}

	default T apply(T a1, T a2, T a3, @Nonnull ExWF exF) {
		try {
			return this.applyX(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			throw Handling.wrap(e, exF);
		}
	}

	default LTernaryOperator trying(@Nonnull ExWF exF) {
		return (a1, a2, a3) -> apply(a1, a2, a3, exF);
	}

	default T applyThen(T a1, T a2, T a3, @Nonnull LFunction handler) {
		try {
			return this.applyX(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			Handling.handleErrors(e);
			return handler.apply(e);
		}
	}

	default LTernaryOperator tryingThen(@Nonnull LFunction handler) {
		return (a1, a2, a3) -> applyThen(a1, a2, a3, handler);
	}

	/** Function call that handles exceptions by always nesting checked exceptions and propagating the others as is. */
	default T nestingApply(T a1, T a2, T a3) {
		try {
			return this.applyX(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			throw Handling.nestCheckedAndThrow(e);
		}
	}

	/** Function call that handles exceptions by always propagating them as is, even when they are undeclared checked ones. */
	default T shovingApply(T a1, T a2, T a3) {
		try {
			return this.applyX(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			throw Handling.shoveIt(e);
		}
	}

	static  T handlingApply(T a1, T a2, T a3, LTernaryOperator func, HandlingInstructions handling) { // <-
		Null.nonNullArg(func, "func");
		return func.handlingApply(a1, a2, a3, handling);
	}

	static  T tryApply(T a1, T a2, T a3, LTernaryOperator func) {
		Null.nonNullArg(func, "func");
		return func.nestingApply(a1, a2, a3);
	}

	static  T tryApply(T a1, T a2, T a3, LTernaryOperator func, @Nonnull ExWMF exF, @Nonnull String newMessage, @Nullable Object... messageParams) {
		Null.nonNullArg(func, "func");
		return func.apply(a1, a2, a3, exF, newMessage, messageParams);
	}

	static  T tryApply(T a1, T a2, T a3, LTernaryOperator func, @Nonnull ExWF exF) {
		Null.nonNullArg(func, "func");
		return func.apply(a1, a2, a3, exF);
	}

	static  T tryApplyThen(T a1, T a2, T a3, LTernaryOperator func, @Nonnull LFunction handler) {
		Null.nonNullArg(func, "func");
		return func.applyThen(a1, a2, a3, handler);
	}

	default T failSafeApply(T a1, T a2, T a3, @Nonnull LTernaryOperator failSafe) {
		try {
			return apply(a1, a2, a3);
		} catch (Throwable e) { // NOSONAR
			Handling.handleErrors(e);
			return failSafe.apply(a1, a2, a3);
		}
	}

	static  T failSafeApply(T a1, T a2, T a3, LTernaryOperator func, @Nonnull LTernaryOperator failSafe) {
		Null.nonNullArg(failSafe, "failSafe");
		if (func == null) {
			return failSafe.apply(a1, a2, a3);
		} else {
			return func.failSafeApply(a1, a2, a3, failSafe);
		}
	}

	static  LTernaryOperator failSafe(LTernaryOperator func, @Nonnull LTernaryOperator failSafe) {
		Null.nonNullArg(failSafe, "failSafe");
		return (a1, a2, a3) -> failSafeApply(a1, a2, a3, func, failSafe);
	}

	LSupplier NULL_VALUE_MESSAGE_SUPPLIER = () -> "Evaluated value by nonNullApply() method cannot be null (" + DESCRIPTION + ").";

	/** Function call that ensures the result is not null */
	@Nonnull
	default T nonNullApply(T a1, T a2, T a3) {
		return Null.requireNonNull(apply(a1, a2, a3), NULL_VALUE_MESSAGE_SUPPLIER);
	}

	/** Returns description of the functional interface. */
	@Nonnull
	default String functionalInterfaceDescription() {
		return LTernaryOperator.DESCRIPTION;
	}

	/** From-To. Intended to be used with non-capturing lambda. */
	public static  void fromTo(int min_i, int max_i, T a1, T a2, T a3, LTernaryOperator func) {
		Null.nonNullArg(func, "func");
		if (min_i <= max_i) {
			for (int i = min_i; i <= max_i; i++) {
				func.apply(a1, a2, a3);
			}
		} else {
			for (int i = min_i; i >= max_i; i--) {
				func.apply(a1, a2, a3);
			}
		}
	}

	/** From-To. Intended to be used with non-capturing lambda. */
	public static  void fromTill(int min_i, int max_i, T a1, T a2, T a3, LTernaryOperator func) {
		Null.nonNullArg(func, "func");
		if (min_i <= max_i) {
			for (int i = min_i; i < max_i; i++) {
				func.apply(a1, a2, a3);
			}
		} else {
			for (int i = min_i; i > max_i; i--) {
				func.apply(a1, a2, a3);
			}
		}
	}

	/** From-To. Intended to be used with non-capturing lambda. */
	public static  void times(int max_i, T a1, T a2, T a3, LTernaryOperator func) {
		if (max_i < 0)
			return;
		fromTill(0, max_i, a1, a2, a3, func);
	}

	public default LBinaryOperator lShrink(LBinaryOperator left) {
		return (a2, a3) -> apply(left.apply(a2, a3), a2, a3);
	}

	public default LBinaryOperator lShrinkc(T a1) {
		return (a2, a3) -> apply(a1, a2, a3);
	}

	public static  LBinaryOperator lShrinked(LBinaryOperator left, LTernaryOperator func) {
		return func.lShrink(left);
	}

	public static  LBinaryOperator lShrinkedc(T a1, LTernaryOperator func) {
		return func.lShrinkc(a1);
	}

	public default LBinaryOperator rShrink(LBinaryOperator right) {
		return (a1, a2) -> apply(a1, a2, right.apply(a1, a2));
	}

	public default LBinaryOperator rShrinkc(T a3) {
		return (a1, a2) -> apply(a1, a2, a3);
	}

	public static  LBinaryOperator rShrinked(LBinaryOperator right, LTernaryOperator func) {
		return func.rShrink(right);
	}

	public static  LBinaryOperator rShrinkedc(T a3, LTernaryOperator func) {
		return func.rShrinkc(a3);
	}

	/**  */
	public static  LTernaryOperator uncurry(LFunction>> func) {
		return (T a1, T a2, T a3) -> func.apply(a1).apply(a2).apply(a3);
	}

	/** Cast that removes generics. */
	public default LTernaryOperator untyped() {
		return this;
	}

	/** Cast that replace generics. */
	public default LTernaryOperator cast() {
		return untyped();
	}

	/** Cast that replace generics. */
	public static  LTernaryOperator cast(LTernaryOperator function) {
		return (LTernaryOperator) function;
	}

	/** Captures arguments but delays the evaluation. */
	default LSupplier capture(T a1, T a2, T a3) {
		return () -> this.apply(a1, a2, a3);
	}

	/** Creates function that always returns the same value. */
	static  LTernaryOperator constant(T r) {
		return (a1, a2, a3) -> r;
	}

	/** Captures single parameter function into this interface where only 1st parameter will be used. */
	@Nonnull
	static  LTernaryOperator apply1st(@Nonnull LUnaryOperator func) {
		return (a1, a2, a3) -> func.apply(a1);
	}

	/** Captures single parameter function into this interface where only 2nd parameter will be used. */
	@Nonnull
	static  LTernaryOperator apply2nd(@Nonnull LUnaryOperator func) {
		return (a1, a2, a3) -> func.apply(a2);
	}

	/** Captures single parameter function into this interface where only 3rd parameter will be used. */
	@Nonnull
	static  LTernaryOperator apply3rd(@Nonnull LUnaryOperator func) {
		return (a1, a2, a3) -> func.apply(a3);
	}

	/** Convenient method in case lambda expression is ambiguous for the compiler (that might happen for overloaded methods accepting different interfaces). */
	@Nonnull
	static  LTernaryOperator ternaryOp(final @Nonnull LTernaryOperator lambda) {
		Null.nonNullArg(lambda, "lambda");
		return lambda;
	}

	@Nonnull
	static  LTernaryOperator recursive(final @Nonnull LFunction, LTernaryOperator> selfLambda) {
		final LTernaryOperatorSingle single = new LTernaryOperatorSingle();
		LTernaryOperator func = selfLambda.apply(single);
		single.target = func;
		return func;
	}

	final class LTernaryOperatorSingle implements LSingle>, LTernaryOperator {
		private LTernaryOperator target = null;

		@Override
		public T applyX(T a1, T a2, T a3) throws Throwable {
			return target.applyX(a1, a2, a3);
		}

		@Override
		public LTernaryOperator value() {
			return target;
		}
	}

	@Nonnull
	static  LTernaryOperator ternaryOpThrowing(final @Nonnull ExF exF) {
		Null.nonNullArg(exF, "exF");
		return (a1, a2, a3) -> {
			throw exF.produce();
		};
	}

	@Nonnull
	static  LTernaryOperator ternaryOpThrowing(final String message, final @Nonnull ExMF exF) {
		Null.nonNullArg(exF, "exF");
		return (a1, a2, a3) -> {
			throw exF.produce(message);
		};
	}

	static  T call(T a1, T a2, T a3, final @Nonnull LTernaryOperator lambda) {
		Null.nonNullArg(lambda, "lambda");
		return lambda.apply(a1, a2, a3);
	}

	// 

	// 

	// 

	/** Safe instance. That always returns the same value (as produce). */
	@Nonnull
	static  LTernaryOperator safe() {
		return LTernaryOperator::produce;
	}

	/** Safe instance supplier. Returns supplier of safe() instance. */
	@Nonnull
	static  LSupplier> safeSupplier() {
		return () -> safe();
	}

	/** Safe wrapping. Either argument function is returned (if it is not null) or safe() instance. */
	@Nonnull
	static  LTernaryOperator safe(final @Nullable LTernaryOperator other) {
		if (other == null) {
			return safe();
		} else {
			return other;
		}
	}

	/** Safe supplier. Either argument supplier is returned (if it is not null) or supplier of safe() instance. */
	@Nonnull
	static  LSupplier> safeSupplier(final @Nullable LSupplier> supplier) {
		if (supplier == null) {
			return safeSupplier();
		} else {
			return supplier;
		}
	}

	// 

	// 

	/** Combines two functions together in a order. */
	@Nonnull
	default  LTriFunction then(@Nonnull LFunction after) {
		Null.nonNullArg(after, "after");
		return (a1, a2, a3) -> after.apply(this.apply(a1, a2, a3));
	}

	/** Combines two functions together in a order. */
	@Nonnull
	default LToIntTriFunction thenToInt(@Nonnull LToIntFunction after) {
		Null.nonNullArg(after, "after");
		return (a1, a2, a3) -> after.applyAsInt(this.apply(a1, a2, a3));
	}

	/** Combines two functions together in a order. */
	@Nonnull
	default LTriPredicate thenToBool(@Nonnull LPredicate after) {
		Null.nonNullArg(after, "after");
		return (a1, a2, a3) -> after.test(this.apply(a1, a2, a3));
	}

	// 

	// 

	// 

	/** Converts to function that makes sure that the result is not null. */
	@Nonnull
	default LTernaryOperator nonNullable() {
		return this::nonNullApply;
	}

	/** Does nothing (LTernaryOperator) Operator */
	public static  T produce(T a1, T a2, T a3) {
		return (T) Function4U.defaultObject;
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void forEach(IndexedRead> ia1, C1 source1, IndexedRead> ia2, C2 source2, IndexedRead> ia3, C3 source3, LConsumer consumer) {
		int size = ia1.size(source1);
		LOiFunction oiFunc1 = (LOiFunction) ia1.getter();
		size = Integer.min(size, ia2.size(source2));
		LOiFunction oiFunc2 = (LOiFunction) ia2.getter();
		size = Integer.min(size, ia3.size(source3));
		LOiFunction oiFunc3 = (LOiFunction) ia3.getter();
		int i = 0;
		for (; i < size; i++) {
			T a1 = oiFunc1.apply(source1, i);
			T a2 = oiFunc2.apply(source2, i);
			T a3 = oiFunc3.apply(source3, i);
			consumer.accept(this.apply(a1, a2, a3));
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void iterate(SequentialRead> sa1, C1 source1, IndexedRead> ia2, C2 source2, IndexedRead> ia3, C3 source3, LConsumer consumer) {
		Object iterator1 = ((LFunction) sa1.adapter()).apply(source1);
		LPredicate testFunc1 = (LPredicate) sa1.tester();
		LFunction nextFunc1 = (LFunction) sa1.supplier();
		int size = ia2.size(source2);
		LOiFunction oiFunc2 = (LOiFunction) ia2.getter();
		size = Integer.min(size, ia3.size(source3));
		LOiFunction oiFunc3 = (LOiFunction) ia3.getter();
		int i = 0;
		while (testFunc1.test(iterator1) && i < size) {
			T a1 = nextFunc1.apply(iterator1);
			T a2 = oiFunc2.apply(source2, i);
			T a3 = oiFunc3.apply(source3, i);
			consumer.accept(this.apply(a1, a2, a3));
			i++;
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void iterate(IndexedRead> ia1, C1 source1, SequentialRead> sa2, C2 source2, IndexedRead> ia3, C3 source3, LConsumer consumer) {
		int size = ia1.size(source1);
		LOiFunction oiFunc1 = (LOiFunction) ia1.getter();
		Object iterator2 = ((LFunction) sa2.adapter()).apply(source2);
		LPredicate testFunc2 = (LPredicate) sa2.tester();
		LFunction nextFunc2 = (LFunction) sa2.supplier();
		size = Integer.min(size, ia3.size(source3));
		LOiFunction oiFunc3 = (LOiFunction) ia3.getter();
		int i = 0;
		while (i < size && testFunc2.test(iterator2)) {
			T a1 = oiFunc1.apply(source1, i);
			T a2 = nextFunc2.apply(iterator2);
			T a3 = oiFunc3.apply(source3, i);
			consumer.accept(this.apply(a1, a2, a3));
			i++;
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void iterate(SequentialRead> sa1, C1 source1, SequentialRead> sa2, C2 source2, IndexedRead> ia3, C3 source3, LConsumer consumer) {
		Object iterator1 = ((LFunction) sa1.adapter()).apply(source1);
		LPredicate testFunc1 = (LPredicate) sa1.tester();
		LFunction nextFunc1 = (LFunction) sa1.supplier();
		Object iterator2 = ((LFunction) sa2.adapter()).apply(source2);
		LPredicate testFunc2 = (LPredicate) sa2.tester();
		LFunction nextFunc2 = (LFunction) sa2.supplier();
		int size = ia3.size(source3);
		LOiFunction oiFunc3 = (LOiFunction) ia3.getter();
		int i = 0;
		while (testFunc1.test(iterator1) && testFunc2.test(iterator2) && i < size) {
			T a1 = nextFunc1.apply(iterator1);
			T a2 = nextFunc2.apply(iterator2);
			T a3 = oiFunc3.apply(source3, i);
			consumer.accept(this.apply(a1, a2, a3));
			i++;
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void iterate(IndexedRead> ia1, C1 source1, IndexedRead> ia2, C2 source2, SequentialRead> sa3, C3 source3, LConsumer consumer) {
		int size = ia1.size(source1);
		LOiFunction oiFunc1 = (LOiFunction) ia1.getter();
		size = Integer.min(size, ia2.size(source2));
		LOiFunction oiFunc2 = (LOiFunction) ia2.getter();
		Object iterator3 = ((LFunction) sa3.adapter()).apply(source3);
		LPredicate testFunc3 = (LPredicate) sa3.tester();
		LFunction nextFunc3 = (LFunction) sa3.supplier();
		int i = 0;
		while (i < size && testFunc3.test(iterator3)) {
			T a1 = oiFunc1.apply(source1, i);
			T a2 = oiFunc2.apply(source2, i);
			T a3 = nextFunc3.apply(iterator3);
			consumer.accept(this.apply(a1, a2, a3));
			i++;
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void iterate(SequentialRead> sa1, C1 source1, IndexedRead> ia2, C2 source2, SequentialRead> sa3, C3 source3, LConsumer consumer) {
		Object iterator1 = ((LFunction) sa1.adapter()).apply(source1);
		LPredicate testFunc1 = (LPredicate) sa1.tester();
		LFunction nextFunc1 = (LFunction) sa1.supplier();
		int size = ia2.size(source2);
		LOiFunction oiFunc2 = (LOiFunction) ia2.getter();
		Object iterator3 = ((LFunction) sa3.adapter()).apply(source3);
		LPredicate testFunc3 = (LPredicate) sa3.tester();
		LFunction nextFunc3 = (LFunction) sa3.supplier();
		int i = 0;
		while (testFunc1.test(iterator1) && i < size && testFunc3.test(iterator3)) {
			T a1 = nextFunc1.apply(iterator1);
			T a2 = oiFunc2.apply(source2, i);
			T a3 = nextFunc3.apply(iterator3);
			consumer.accept(this.apply(a1, a2, a3));
			i++;
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method is not expected.
	*/
	default  void iterate(IndexedRead> ia1, C1 source1, SequentialRead> sa2, C2 source2, SequentialRead> sa3, C3 source3, LConsumer consumer) {
		int size = ia1.size(source1);
		LOiFunction oiFunc1 = (LOiFunction) ia1.getter();
		Object iterator2 = ((LFunction) sa2.adapter()).apply(source2);
		LPredicate testFunc2 = (LPredicate) sa2.tester();
		LFunction nextFunc2 = (LFunction) sa2.supplier();
		Object iterator3 = ((LFunction) sa3.adapter()).apply(source3);
		LPredicate testFunc3 = (LPredicate) sa3.tester();
		LFunction nextFunc3 = (LFunction) sa3.supplier();
		int i = 0;
		while (i < size && testFunc2.test(iterator2) && testFunc3.test(iterator3)) {
			T a1 = oiFunc1.apply(source1, i);
			T a2 = nextFunc2.apply(iterator2);
			T a3 = nextFunc3.apply(iterator3);
			consumer.accept(this.apply(a1, a2, a3));
			i++;
		}
	}

	/**
	* For each element (or tuple) from arguments, calls the function and passes the result to consumer.
	* Thread safety, fail-fast, fail-safety of this method depends highly on the arguments.
	*/
	default  void iterate(SequentialRead> sa1, C1 source1, SequentialRead> sa2, C2 source2, SequentialRead> sa3, C3 source3, LConsumer consumer) {
		Object iterator1 = ((LFunction) sa1.adapter()).apply(source1);
		LPredicate testFunc1 = (LPredicate) sa1.tester();
		LFunction nextFunc1 = (LFunction) sa1.supplier();
		Object iterator2 = ((LFunction) sa2.adapter()).apply(source2);
		LPredicate testFunc2 = (LPredicate) sa2.tester();
		LFunction nextFunc2 = (LFunction) sa2.supplier();
		Object iterator3 = ((LFunction) sa3.adapter()).apply(source3);
		LPredicate testFunc3 = (LPredicate) sa3.tester();
		LFunction nextFunc3 = (LFunction) sa3.supplier();
		while (testFunc1.test(iterator1) && testFunc2.test(iterator2) && testFunc3.test(iterator3)) {
			T a1 = nextFunc1.apply(iterator1);
			T a2 = nextFunc2.apply(iterator2);
			T a3 = nextFunc3.apply(iterator3);
			consumer.accept(this.apply(a1, a2, a3));
		}
	}

}