All Downloads are FREE. Search and download functionalities are using the official Maven repository.

eu.mihosoft.ext.j3d.javax.vecmath.Matrix3d Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 1996-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

package eu.mihosoft.ext.j3d.javax.vecmath;


/**
 * A double precision floating point 3 by 3 matrix.
 * Primarily to support 3D rotations.
 *
 */
public class Matrix3d implements java.io.Serializable, Cloneable {

    // Compatible with 1.1
    static final long serialVersionUID = 6837536777072402710L;

    /**
     * The first matrix element in the first row.
     */
    public	double	m00;

    /**
     * The second matrix element in the first row.
     */
    public	double	m01;

    /**
     * The third matrix element in the first row.
     */
    public	double	m02;

    /**
     * The first matrix element in the second row.
     */
    public	double	m10;

    /**
     * The second matrix element in the second row.
     */
    public	double	m11;

    /**
     * The third matrix element in the second row.
     */
    public	double	m12;

    /**
     * The first matrix element in the third row.
     */
    public	double	m20;

    /**
     * The second matrix element in the third row.
     */
    public	double	m21;

    /**
     * The third matrix element in the third row.
     */
    public	double	m22;

    //double[]    tmp = new double[9];  // scratch matrix
    //double[]    tmp_rot = new double[9];  // scratch matrix
    //double[]    tmp_scale = new double[3];  // scratch matrix
    private static final double EPS = 1.110223024E-16;

    /**
     * Constructs and initializes a Matrix3d from the specified nine values.
     * @param m00 the [0][0] element
     * @param m01 the [0][1] element
     * @param m02 the [0][2] element
     * @param m10 the [1][0] element
     * @param m11 the [1][1] element
     * @param m12 the [1][2] element
     * @param m20 the [2][0] element
     * @param m21 the [2][1] element
     * @param m22 the [2][2] element
     */
    public Matrix3d(double m00, double m01, double m02,
		    double m10, double m11, double m12,
		    double m20, double m21, double m22)
    {
	this.m00 = m00;
	this.m01 = m01;
	this.m02 = m02;

	this.m10 = m10;
	this.m11 = m11;
	this.m12 = m12;

	this.m20 = m20;
	this.m21 = m21;
	this.m22 = m22;

    }

    /**
     * Constructs and initializes a Matrix3d from the specified nine-
     * element array.
     * @param v the array of length 9 containing in order
     */
    public Matrix3d(double[] v)
    {
	this.m00 = v[0];
	this.m01 = v[1];
	this.m02 = v[2];

	this.m10 = v[3];
	this.m11 = v[4];
	this.m12 = v[5];

	this.m20 = v[6];
	this.m21 = v[7];
	this.m22 = v[8];

    }

   /**
     *  Constructs a new matrix with the same values as the
     *  Matrix3d parameter.
     *  @param m1  the source matrix
     */
   public Matrix3d(Matrix3d m1)
   {
        this.m00 = m1.m00;
        this.m01 = m1.m01;
        this.m02 = m1.m02;

        this.m10 = m1.m10;
        this.m11 = m1.m11;
        this.m12 = m1.m12;

        this.m20 = m1.m20;
        this.m21 = m1.m21;
        this.m22 = m1.m22;

   }

   /**
     *  Constructs a new matrix with the same values as the
     *  Matrix3f parameter.
     *  @param m1  the source matrix
     */
   public Matrix3d(Matrix3f m1)
   {
        this.m00 = m1.m00;
        this.m01 = m1.m01;
        this.m02 = m1.m02;

        this.m10 = m1.m10;
        this.m11 = m1.m11;
        this.m12 = m1.m12;

        this.m20 = m1.m20;
        this.m21 = m1.m21;
        this.m22 = m1.m22;

   }

    /**
     * Constructs and initializes a Matrix3d to all zeros.
     */
    public Matrix3d()
    {
	this.m00 = 0.0;
	this.m01 = 0.0;
	this.m02 = 0.0;

	this.m10 = 0.0;
	this.m11 = 0.0;
	this.m12 = 0.0;

	this.m20 = 0.0;
	this.m21 = 0.0;
	this.m22 = 0.0;

    }

   /**
     * Returns a string that contains the values of this Matrix3d.
     * @return the String representation
     */
    @Override
    public String toString() {
      return
	this.m00 + ", " + this.m01 + ", " + this.m02 + "\n" +
	this.m10 + ", " + this.m11 + ", " + this.m12 + "\n" +
	this.m20 + ", " + this.m21 + ", " + this.m22 + "\n";
    }

    /**
     * Sets this Matrix3d to identity.
     */
    public final void setIdentity()
    {
	this.m00 = 1.0;
	this.m01 = 0.0;
	this.m02 = 0.0;

	this.m10 = 0.0;
	this.m11 = 1.0;
	this.m12 = 0.0;

	this.m20 = 0.0;
	this.m21 = 0.0;
	this.m22 = 1.0;
    }

   /**
     * Sets the scale component of the current matrix by factoring
     * out the current scale (by doing an SVD) and multiplying by
     * the new scale.
     * @param scale  the new scale amount
     */
    public final void setScale(double scale)
    {

	double[]    tmp_rot = new double[9];  // scratch matrix
	double[]    tmp_scale = new double[3];  // scratch matrix

	getScaleRotate(tmp_scale, tmp_rot);

	this.m00 = tmp_rot[0] * scale;
	this.m01 = tmp_rot[1] * scale;
	this.m02 = tmp_rot[2] * scale;

	this.m10 = tmp_rot[3] * scale;
	this.m11 = tmp_rot[4] * scale;
	this.m12 = tmp_rot[5] * scale;

	this.m20 = tmp_rot[6] * scale;
	this.m21 = tmp_rot[7] * scale;
	this.m22 = tmp_rot[8] * scale;
    }

    /**
     * Sets the specified element of this matrix3f to the value provided.
     * @param row the row number to be modified (zero indexed)
     * @param column the column number to be modified (zero indexed)
     * @param value the new value
     */
    public final void setElement(int row, int column, double value)
    {
	switch (row)
	  {
	  case 0:
	    switch(column)
	      {
	      case 0:
		this.m00 = value;
		break;
	      case 1:
		this.m01 = value;
		break;
	      case 2:
		this.m02 = value;
		break;
	      default:
		throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
	      }
	    break;

	  case 1:
	    switch(column)
	      {
	      case 0:
		this.m10 = value;
		break;
	      case 1:
		this.m11 = value;
		break;
	      case 2:
		this.m12 = value;
		break;
	      default:
		throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
	      }
	    break;


	  case 2:
	    switch(column)
	      {
	      case 0:
		this.m20 = value;
		break;
	      case 1:
		this.m21 = value;
		break;
	      case 2:
		this.m22 = value;
		break;
	      default:
		throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
	      }
	    break;

	  default:
		throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
	  }
    }

    /**
     * Retrieves the value at the specified row and column of the specified
     * matrix.
     * @param row the row number to be retrieved (zero indexed)
     * @param column the column number to be retrieved (zero indexed)
     * @return the value at the indexed element.
     */
    public final double getElement(int row, int column)
    {
	switch (row)
	  {
	  case 0:
	    switch(column)
	      {
	      case 0:
		return(this.m00);
	      case 1:
		return(this.m01);
	      case 2:
		return(this.m02);
	      default:
		break;
	      }
	    break;
	  case 1:
	    switch(column)
	      {
	      case 0:
		return(this.m10);
	      case 1:
		return(this.m11);
	      case 2:
		return(this.m12);
	      default:
		break;
	      }
	    break;

	  case 2:
	    switch(column)
	      {
	      case 0:
		return(this.m20);
	      case 1:
		return(this.m21);
	      case 2:
		return(this.m22);
	      default:
		break;
	      }
	    break;

	  default:
	    break;
	  }

	throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d1"));
    }

    /**
     * Copies the matrix values in the specified row into the vector parameter.
     * @param row  the matrix row
     * @param v    the vector into which the matrix row values will be copied
     */
    public final void getRow(int row, Vector3d v) {
        if( row == 0 ) {
           v.x = m00;
           v.y = m01;
           v.z = m02;
        } else if(row == 1) {
           v.x = m10;
           v.y = m11;
           v.z = m12;
        } else if(row == 2) {
           v.x = m20;
           v.y = m21;
           v.z = m22;
        } else {
          throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d2"));
        }

    }

    /**
     * Copies the matrix values in the specified row into the array parameter.
     * @param row  the matrix row
     * @param v    the array into which the matrix row values will be copied
     */
    public final void getRow(int row, double v[]) {
        if( row == 0 ) {
           v[0] = m00;
           v[1] = m01;
           v[2] = m02;
        } else if(row == 1) {
           v[0] = m10;
           v[1] = m11;
           v[2] = m12;
        } else if(row == 2) {
           v[0] = m20;
           v[1] = m21;
           v[2] = m22;
        } else {
          throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d2"));
        }

    }

    /**
     * Copies the matrix values in the specified column into the vector
     * parameter.
     * @param column  the matrix column
     * @param v    the vector into which the matrix row values will be copied
     */
    public final void getColumn(int column, Vector3d v) {
        if( column == 0 ) {
           v.x = m00;
           v.y = m10;
           v.z = m20;
        } else if(column == 1) {
           v.x = m01;
           v.y = m11;
           v.z = m21;
        }else if(column == 2){
           v.x = m02;
           v.y = m12;
           v.z = m22;
        } else {
           throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d4"));
        }

    }

    /**
     * Copies the matrix values in the specified column into the array
     * parameter.
     * @param column  the matrix column
     * @param v    the array into which the matrix row values will be copied
     */
    public final void getColumn(int column, double v[]) {
        if( column == 0 ) {
           v[0] = m00;
           v[1] = m10;
           v[2] = m20;
        } else if(column == 1) {
           v[0] = m01;
           v[1] = m11;
           v[2] = m21;
        }else if(column == 2) {
           v[0] = m02;
           v[1] = m12;
           v[2] = m22;
        }else {
          throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d4"));
        }

    }


    /**
     * Sets the specified row of this matrix3d to the 4 values provided.
     * @param row the row number to be modified (zero indexed)
     * @param x the first column element
     * @param y the second column element
     * @param z the third column element
     */
    public final void setRow(int row, double x, double y, double z)
    {
	switch (row) {
	case 0:
	    this.m00 = x;
	    this.m01 = y;
	    this.m02 = z;
	    break;

	case 1:
	    this.m10 = x;
	    this.m11 = y;
	    this.m12 = z;
	    break;

	case 2:
	    this.m20 = x;
	    this.m21 = y;
	    this.m22 = z;
	    break;

	default:
	  throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d6"));
	}
    }

    /**
     * Sets the specified row of this matrix3d to the Vector provided.
     * @param row the row number to be modified (zero indexed)
     * @param v the replacement row
     */
    public final void setRow(int row, Vector3d v)
    {
	switch (row) {
	case 0:
	    this.m00 = v.x;
	    this.m01 = v.y;
	    this.m02 = v.z;
	    break;

	case 1:
	    this.m10 = v.x;
	    this.m11 = v.y;
	    this.m12 = v.z;
	    break;

	case 2:
	    this.m20 = v.x;
	    this.m21 = v.y;
	    this.m22 = v.z;
	    break;

	default:
            throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d6"));
	}
    }

    /**
     * Sets the specified row of this matrix3d to the three values provided.
     * @param row the row number to be modified (zero indexed)
     * @param v the replacement row
     */
    public final void setRow(int row, double v[])
    {
	switch (row) {
	case 0:
	    this.m00 = v[0];
	    this.m01 = v[1];
	    this.m02 = v[2];
	    break;

	case 1:
	    this.m10 = v[0];
	    this.m11 = v[1];
	    this.m12 = v[2];
	    break;

	case 2:
	    this.m20 = v[0];
	    this.m21 = v[1];
	    this.m22 = v[2];
	    break;

	default:
            throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d6"));
	}
    }

    /**
     * Sets the specified column of this matrix3d to the three values provided.
     * @param column the column number to be modified (zero indexed)
     * @param x the first row element
     * @param y the second row element
     * @param z the third row element
     */
    public final void setColumn(int column, double x, double y, double z)
    {
	switch (column) {
	case 0:
	    this.m00 = x;
	    this.m10 = y;
	    this.m20 = z;
	    break;

	case 1:
	    this.m01 = x;
	    this.m11 = y;
	    this.m21 = z;
	    break;

	case 2:
	    this.m02 = x;
	    this.m12 = y;
	    this.m22 = z;
	    break;

	default:
            throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d9"));
	}
    }

    /**
     * Sets the specified column of this matrix3d to the vector provided.
     * @param column the column number to be modified (zero indexed)
     * @param v the replacement column
     */
    public final void setColumn(int column, Vector3d v)
    {
	switch (column) {
	case 0:
	    this.m00 = v.x;
	    this.m10 = v.y;
	    this.m20 = v.z;
	    break;

	case 1:
	    this.m01 = v.x;
	    this.m11 = v.y;
	    this.m21 = v.z;
	    break;

	case 2:
	    this.m02 = v.x;
	    this.m12 = v.y;
	    this.m22 = v.z;
	    break;

	default:
            throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d9"));
	}
    }

    /**
     * Sets the specified column of this matrix3d to the three values provided.
     * @param column the column number to be modified (zero indexed)
     * @param v the replacement column
     */
    public final void setColumn(int column, double v[])
    {
	switch (column) {
	case 0:
	    this.m00 = v[0];
	    this.m10 = v[1];
	    this.m20 = v[2];
	    break;

	case 1:
	    this.m01 = v[0];
	    this.m11 = v[1];
	    this.m21 = v[2];
	    break;

	case 2:
	    this.m02 = v[0];
	    this.m12 = v[1];
	    this.m22 = v[2];
	    break;

	default:
            throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d9"));
	}
    }

   /**
     * Performs an SVD normalization of this matrix to calculate
     * and return the uniform scale factor. If the matrix has non-uniform
     * scale factors, the largest of the x, y, and z scale factors will
     * be returned. This matrix is not modified.
     * @return  the scale factor of this matrix
     */
    public final double getScale()
    {

	double[]    tmp_scale = new double[3];  // scratch matrix
	double[]    tmp_rot = new double[9];  // scratch matrix
	getScaleRotate(tmp_scale, tmp_rot);

        return( max3(tmp_scale) );

    }

   /**
     *  Adds a scalar to each component of this matrix.
     *  @param scalar  the scalar adder
     */
    public final void add(double scalar)
    {
        m00 += scalar;
        m01 += scalar;
        m02 += scalar;

        m10 += scalar;
        m11 += scalar;
        m12 += scalar;

        m20 += scalar;
        m21 += scalar;
        m22 += scalar;

    }

   /**
     *  Adds a scalar to each component of the matrix m1 and places
     *  the result into this.  Matrix m1 is not modified.
     *  @param scalar  the scalar adder
     *  @param m1  the original matrix values
     */
    public final void add(double scalar, Matrix3d m1)
    {
	this.m00 = m1.m00 + scalar;
	this.m01 = m1.m01 + scalar;
	this.m02 = m1.m02 + scalar;

	this.m10 = m1.m10 + scalar;
	this.m11 = m1.m11 + scalar;
	this.m12 = m1.m12 + scalar;

	this.m20 = m1.m20 + scalar;
	this.m21 = m1.m21 + scalar;
	this.m22 = m1.m22 + scalar;
    }

    /**
     * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
     * @param m1 the first matrix
     * @param m2 the second matrix
     */
    public final void add(Matrix3d m1, Matrix3d m2)
    {
	this.m00 = m1.m00 + m2.m00;
	this.m01 = m1.m01 + m2.m01;
	this.m02 = m1.m02 + m2.m02;

	this.m10 = m1.m10 + m2.m10;
	this.m11 = m1.m11 + m2.m11;
	this.m12 = m1.m12 + m2.m12;

	this.m20 = m1.m20 + m2.m20;
	this.m21 = m1.m21 + m2.m21;
	this.m22 = m1.m22 + m2.m22;
    }

    /**
     * Sets the value of this matrix to the sum of itself and matrix m1.
     * @param m1 the other matrix
     */
    public final void add(Matrix3d m1)
    {
        this.m00 += m1.m00;
        this.m01 += m1.m01;
        this.m02 += m1.m02;

        this.m10 += m1.m10;
        this.m11 += m1.m11;
        this.m12 += m1.m12;

        this.m20 += m1.m20;
        this.m21 += m1.m21;
        this.m22 += m1.m22;
    }

    /**
     * Sets the value of this matrix to the matrix difference
     * of matrices m1 and m2.
     * @param m1 the first matrix
     * @param m2 the second matrix
     */
    public final void sub(Matrix3d m1, Matrix3d m2)
    {
	this.m00 = m1.m00 - m2.m00;
	this.m01 = m1.m01 - m2.m01;
	this.m02 = m1.m02 - m2.m02;

	this.m10 = m1.m10 - m2.m10;
	this.m11 = m1.m11 - m2.m11;
	this.m12 = m1.m12 - m2.m12;

	this.m20 = m1.m20 - m2.m20;
	this.m21 = m1.m21 - m2.m21;
	this.m22 = m1.m22 - m2.m22;
    }

    /**
     * Sets the value of this matrix to the matrix difference of itself and
     * matrix m1 (this = this - m1).
     * @param m1 the other matrix
     */
    public final void sub(Matrix3d m1)
    {
        this.m00 -= m1.m00;
        this.m01 -= m1.m01;
        this.m02 -= m1.m02;

        this.m10 -= m1.m10;
        this.m11 -= m1.m11;
        this.m12 -= m1.m12;

        this.m20 -= m1.m20;
        this.m21 -= m1.m21;
        this.m22 -= m1.m22;
    }

    /**
     * Sets the value of this matrix to its transpose.
     */
    public final void transpose()
    {
	double temp;

	temp = this.m10;
	this.m10 = this.m01;
	this.m01 = temp;

	temp = this.m20;
	this.m20 = this.m02;
	this.m02 = temp;

	temp = this.m21;
	this.m21 = this.m12;
	this.m12 = temp;
    }

    /**
     * Sets the value of this matrix to the transpose of the argument matrix.
     * @param m1 the matrix to be transposed
     */
    public final void transpose(Matrix3d m1)
    {
	if (this != m1) {
	    this.m00 = m1.m00;
	    this.m01 = m1.m10;
	    this.m02 = m1.m20;

	    this.m10 = m1.m01;
	    this.m11 = m1.m11;
	    this.m12 = m1.m21;

	    this.m20 = m1.m02;
	    this.m21 = m1.m12;
	    this.m22 = m1.m22;
	} else
	    this.transpose();
    }

    /**
     * Sets the value of this matrix to the matrix conversion of the
     * double precision quaternion argument.
     * @param q1 the quaternion to be converted
     */
    public final void set(Quat4d q1)
    {
	this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
	this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z));
	this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y));

	this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z));
	this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
	this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x));

	this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y));
	this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x));
	this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
    }

    /**
     * Sets the value of this matrix to the matrix conversion of the
     * double precision axis and angle argument.
     * @param a1 the axis and angle to be converted
     */
    public final void set(AxisAngle4d a1)
    {
      double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);

      if( mag < EPS ) {
	m00 = 1.0;
	m01 = 0.0;
	m02 = 0.0;

	m10 = 0.0;
	m11 = 1.0;
	m12 = 0.0;

	m20 = 0.0;
	m21 = 0.0;
	m22 = 1.0;
      } else {
	mag = 1.0/mag;
        double ax = a1.x*mag;
        double ay = a1.y*mag;
        double az = a1.z*mag;

        double sinTheta = Math.sin(a1.angle);
        double cosTheta = Math.cos(a1.angle);
        double t = 1.0 - cosTheta;

        double xz = ax * az;
        double xy = ax * ay;
        double yz = ay * az;

        m00 = t * ax * ax + cosTheta;
        m01 = t * xy - sinTheta * az;
        m02 = t * xz + sinTheta * ay;

        m10 = t * xy + sinTheta * az;
        m11 = t * ay * ay + cosTheta;
        m12 = t * yz - sinTheta * ax;

        m20 = t * xz - sinTheta * ay;
        m21 = t * yz + sinTheta * ax;
        m22 = t * az * az + cosTheta;
      }
    }

    /**
     * Sets the value of this matrix to the matrix conversion of the
     * single precision quaternion argument.
     * @param q1 the quaternion to be converted
     */
    public final void set(Quat4f q1)
    {
	this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
	this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z));
	this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y));

	this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z));
	this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
	this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x));

	this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y));
	this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x));
	this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
    }

    /**
     * Sets the value of this matrix to the matrix conversion of the
     * single precision axis and angle argument.
     * @param a1 the axis and angle to be converted
     */
    public final void set(AxisAngle4f a1)
    {
      double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
      if( mag < EPS ) {
	m00 = 1.0;
	m01 = 0.0;
	m02 = 0.0;

	m10 = 0.0;
	m11 = 1.0;
	m12 = 0.0;

	m20 = 0.0;
	m21 = 0.0;
	m22 = 1.0;
      } else {
	mag = 1.0/mag;
        double ax = a1.x*mag;
        double ay = a1.y*mag;
        double az = a1.z*mag;
        double sinTheta = Math.sin(a1.angle);
        double cosTheta = Math.cos(a1.angle);
        double t = 1.0 - cosTheta;

        double xz = ax * az;
        double xy = ax * ay;
        double yz = ay * az;

        m00 = t * ax * ax + cosTheta;
        m01 = t * xy - sinTheta * az;
        m02 = t * xz + sinTheta * ay;

        m10 = t * xy + sinTheta * az;
        m11 = t * ay * ay + cosTheta;
        m12 = t * yz - sinTheta * ax;

        m20 = t * xz - sinTheta * ay;
        m21 = t * yz + sinTheta * ax;
        m22 = t * az * az + cosTheta;
      }
    }

    /**
     * Sets the value of this matrix to the double value of the Matrix3f
     * argument.
     * @param m1 the matrix3d to be converted to double
     */
    public final void set(Matrix3f m1)
    {
	this.m00 = m1.m00;
	this.m01 = m1.m01;
	this.m02 = m1.m02;

	this.m10 = m1.m10;
	this.m11 = m1.m11;
	this.m12 = m1.m12;

	this.m20 = m1.m20;
	this.m21 = m1.m21;
	this.m22 = m1.m22;
    }

    /**
     * Sets the value of this matrix to the value of the Matrix3d
     * argument.
     * @param m1 the source matrix3d
     */
    public final void set(Matrix3d m1)
    {
        this.m00 = m1.m00;
        this.m01 = m1.m01;
        this.m02 = m1.m02;

        this.m10 = m1.m10;
        this.m11 = m1.m11;
        this.m12 = m1.m12;

        this.m20 = m1.m20;
        this.m21 = m1.m21;
        this.m22 = m1.m22;
    }

    /**
     *  Sets the values in this Matrix3d equal to the row-major
     *  array parameter (ie, the first three elements of the
     *  array will be copied into the first row of this matrix, etc.).
     *  @param m  the double precision array of length 9
     */
    public final void set(double[] m)
    {
       m00 = m[0];
       m01 = m[1];
       m02 = m[2];

       m10 = m[3];
       m11 = m[4];
       m12 = m[5];

       m20 = m[6];
       m21 = m[7];
       m22 = m[8];

    }

    /**
     * Sets the value of this matrix to the matrix inverse
     * of the passed matrix m1.
     * @param m1 the matrix to be inverted
     */
    public final void invert(Matrix3d m1)
    {
         invertGeneral( m1 );
    }

    /**
     * Inverts this matrix in place.
     */
    public final void invert()
    {
         invertGeneral( this );
    }

    /**
     * General invert routine.  Inverts m1 and places the result in "this".
     * Note that this routine handles both the "this" version and the
     * non-"this" version.
     *
     * Also note that since this routine is slow anyway, we won't worry
     * about allocating a little bit of garbage.
     */
    private final void invertGeneral(Matrix3d  m1) {
	double result[] = new double[9];
	int row_perm[] = new int[3];
	int i;
	double[]    tmp = new double[9];  // scratch matrix

	// Use LU decomposition and backsubstitution code specifically
	// for floating-point 3x3 matrices.

	// Copy source matrix to t1tmp
        tmp[0] = m1.m00;
        tmp[1] = m1.m01;
        tmp[2] = m1.m02;

        tmp[3] = m1.m10;
        tmp[4] = m1.m11;
        tmp[5] = m1.m12;

        tmp[6] = m1.m20;
        tmp[7] = m1.m21;
        tmp[8] = m1.m22;


	// Calculate LU decomposition: Is the matrix singular?
	if (!luDecomposition(tmp, row_perm)) {
	    // Matrix has no inverse
	    throw new SingularMatrixException(VecMathI18N.getString("Matrix3d12"));
	}

	// Perform back substitution on the identity matrix
        for(i=0;i<9;i++) result[i] = 0.0;
        result[0] = 1.0; result[4] = 1.0; result[8] = 1.0;
	luBacksubstitution(tmp, row_perm, result);

        this.m00 = result[0];
        this.m01 = result[1];
        this.m02 = result[2];

        this.m10 = result[3];
        this.m11 = result[4];
        this.m12 = result[5];

        this.m20 = result[6];
        this.m21 = result[7];
        this.m22 = result[8];

    }

    /**
     * Given a 3x3 array "matrix0", this function replaces it with the
     * LU decomposition of a row-wise permutation of itself.  The input
     * parameters are "matrix0" and "dimen".  The array "matrix0" is also
     * an output parameter.  The vector "row_perm[3]" is an output
     * parameter that contains the row permutations resulting from partial
     * pivoting.  The output parameter "even_row_xchg" is 1 when the
     * number of row exchanges is even, or -1 otherwise.  Assumes data
     * type is always double.
     *
     * This function is similar to luDecomposition, except that it
     * is tuned specifically for 3x3 matrices.
     *
     * @return true if the matrix is nonsingular, or false otherwise.
     */
    //
    // Reference: Press, Flannery, Teukolsky, Vetterling,
    //	      _Numerical_Recipes_in_C_, Cambridge University Press,
    //	      1988, pp 40-45.
    //
    static boolean luDecomposition(double[] matrix0,
				   int[] row_perm) {

	double row_scale[] = new double[3];

	// Determine implicit scaling information by looping over rows
	{
	    int i, j;
	    int ptr, rs;
	    double big, temp;

	    ptr = 0;
	    rs = 0;

	    // For each row ...
	    i = 3;
	    while (i-- != 0) {
		big = 0.0;

		// For each column, find the largest element in the row
		j = 3;
		while (j-- != 0) {
		    temp = matrix0[ptr++];
		    temp = Math.abs(temp);
		    if (temp > big) {
			big = temp;
		    }
		}

		// Is the matrix singular?
		if (big == 0.0) {
		    return false;
		}
		row_scale[rs++] = 1.0 / big;
	    }
	}

	{
	    int j;
	    int mtx;

	    mtx = 0;

	    // For all columns, execute Crout's method
	    for (j = 0; j < 3; j++) {
		int i, imax, k;
		int target, p1, p2;
		double sum, big, temp;

		// Determine elements of upper diagonal matrix U
		for (i = 0; i < j; i++) {
		    target = mtx + (3*i) + j;
		    sum = matrix0[target];
		    k = i;
		    p1 = mtx + (3*i);
		    p2 = mtx + j;
		    while (k-- != 0) {
			sum -= matrix0[p1] * matrix0[p2];
			p1++;
			p2 += 3;
		    }
		    matrix0[target] = sum;
		}

		// Search for largest pivot element and calculate
		// intermediate elements of lower diagonal matrix L.
		big = 0.0;
		imax = -1;
		for (i = j; i < 3; i++) {
		    target = mtx + (3*i) + j;
		    sum = matrix0[target];
		    k = j;
		    p1 = mtx + (3*i);
		    p2 = mtx + j;
		    while (k-- != 0) {
			sum -= matrix0[p1] * matrix0[p2];
			p1++;
			p2 += 3;
		    }
		    matrix0[target] = sum;

		    // Is this the best pivot so far?
		    if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
			big = temp;
			imax = i;
		    }
		}

		if (imax < 0) {
		    throw new RuntimeException(VecMathI18N.getString("Matrix3d13"));
		}

		// Is a row exchange necessary?
		if (j != imax) {
		    // Yes: exchange rows
		    k = 3;
		    p1 = mtx + (3*imax);
		    p2 = mtx + (3*j);
		    while (k-- != 0) {
			temp = matrix0[p1];
			matrix0[p1++] = matrix0[p2];
			matrix0[p2++] = temp;
		    }

		    // Record change in scale factor
		    row_scale[imax] = row_scale[j];
		}

		// Record row permutation
		row_perm[j] = imax;

		// Is the matrix singular
		if (matrix0[(mtx + (3*j) + j)] == 0.0) {
		    return false;
		}

		// Divide elements of lower diagonal matrix L by pivot
		if (j != (3-1)) {
		    temp = 1.0 / (matrix0[(mtx + (3*j) + j)]);
		    target = mtx + (3*(j+1)) + j;
		    i = 2 - j;
		    while (i-- != 0) {
			matrix0[target] *= temp;
			target += 3;
		    }
		}
	    }
	}

	return true;
    }

    /**
     * Solves a set of linear equations.  The input parameters "matrix1",
     * and "row_perm" come from luDecompostionD3x3 and do not change
     * here.  The parameter "matrix2" is a set of column vectors assembled
     * into a 3x3 matrix of floating-point values.  The procedure takes each
     * column of "matrix2" in turn and treats it as the right-hand side of the
     * matrix equation Ax = LUx = b.  The solution vector replaces the
     * original column of the matrix.
     *
     * If "matrix2" is the identity matrix, the procedure replaces its contents
     * with the inverse of the matrix from which "matrix1" was originally
     * derived.
     */
    //
    // Reference: Press, Flannery, Teukolsky, Vetterling,
    //	      _Numerical_Recipes_in_C_, Cambridge University Press,
    //	      1988, pp 44-45.
    //
    static void luBacksubstitution(double[] matrix1,
				   int[] row_perm,
				   double[] matrix2) {

	int i, ii, ip, j, k;
	int rp;
	int cv, rv;

	//	rp = row_perm;
	rp = 0;

	// For each column vector of matrix2 ...
	for (k = 0; k < 3; k++) {
	    //	    cv = &(matrix2[0][k]);
	    cv = k;
	    ii = -1;

	    // Forward substitution
	    for (i = 0; i < 3; i++) {
		double sum;

		ip = row_perm[rp+i];
		sum = matrix2[cv+3*ip];
		matrix2[cv+3*ip] = matrix2[cv+3*i];
		if (ii >= 0) {
		    //		    rv = &(matrix1[i][0]);
		    rv = i*3;
		    for (j = ii; j <= i-1; j++) {
			sum -= matrix1[rv+j] * matrix2[cv+3*j];
		    }
		}
		else if (sum != 0.0) {
		    ii = i;
		}
		matrix2[cv+3*i] = sum;
	    }

	    // Backsubstitution
	    //	    rv = &(matrix1[3][0]);
	    rv = 2*3;
	    matrix2[cv+3*2] /= matrix1[rv+2];

	    rv -= 3;
	    matrix2[cv+3*1] = (matrix2[cv+3*1] -
			    matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+1];

	    rv -= 3;
	    matrix2[cv+4*0] = (matrix2[cv+3*0] -
			    matrix1[rv+1] * matrix2[cv+3*1] -
			    matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+0];

	}
    }

    /**
     * Computes the determinant of this matrix.
     * @return the determinant of the matrix
     */
    public final double determinant()
    {
       double total;

       total =  this.m00*(this.m11*this.m22 - this.m12*this.m21)
              + this.m01*(this.m12*this.m20 - this.m10*this.m22)
              + this.m02*(this.m10*this.m21 - this.m11*this.m20);
       return total;
    }

    /**
     * Sets the value of this matrix to a scale matrix with
     * the passed scale amount.
     * @param scale the scale factor for the matrix
     */
    public final void set(double scale)
    {
	this.m00 = scale;
	this.m01 = 0.0;
	this.m02 = 0.0;

	this.m10 = 0.0;
	this.m11 = scale;
	this.m12 = 0.0;

	this.m20 = 0.0;
	this.m21 = 0.0;
	this.m22 = scale;
    }

    /**
     * Sets the value of this matrix to a counter clockwise rotation
     * about the x axis.
     * @param angle the angle to rotate about the X axis in radians
     */
    public final void rotX(double angle)
    {
	double	sinAngle, cosAngle;

	sinAngle = Math.sin(angle);
	cosAngle = Math.cos(angle);

	this.m00 = 1.0;
	this.m01 = 0.0;
	this.m02 = 0.0;

	this.m10 = 0.0;
	this.m11 = cosAngle;
	this.m12 = -sinAngle;

	this.m20 = 0.0;
	this.m21 = sinAngle;
	this.m22 = cosAngle;
    }

    /**
     * Sets the value of this matrix to a counter clockwise rotation
     * about the y axis.
     * @param angle the angle to rotate about the Y axis in radians
     */
    public final void rotY(double angle)
    {
	double	sinAngle, cosAngle;

	sinAngle = Math.sin(angle);
	cosAngle = Math.cos(angle);

	this.m00 = cosAngle;
	this.m01 = 0.0;
	this.m02 = sinAngle;

	this.m10 = 0.0;
	this.m11 = 1.0;
	this.m12 = 0.0;

	this.m20 = -sinAngle;
	this.m21 = 0.0;
	this.m22 = cosAngle;
    }

    /**
     * Sets the value of this matrix to a counter clockwise rotation
     * about the z axis.
     * @param angle the angle to rotate about the Z axis in radians
     */
    public final void rotZ(double angle)
    {
	double	sinAngle, cosAngle;

	sinAngle = Math.sin(angle);
	cosAngle = Math.cos(angle);

	this.m00 = cosAngle;
	this.m01 = -sinAngle;
	this.m02 = 0.0;

	this.m10 = sinAngle;
	this.m11 = cosAngle;
	this.m12 = 0.0;

	this.m20 = 0.0;
	this.m21 = 0.0;
	this.m22 = 1.0;
    }

   /**
     * Multiplies each element of this matrix by a scalar.
     * @param scalar  The scalar multiplier.
     */
    public final void mul(double scalar)
    {
       m00 *= scalar;
       m01 *= scalar;
       m02 *= scalar;

       m10 *= scalar;
       m11 *= scalar;
       m12 *= scalar;

       m20 *= scalar;
       m21 *= scalar;
       m22 *= scalar;

    }

   /**
     * Multiplies each element of matrix m1 by a scalar and places
     * the result into this.  Matrix m1 is not modified.
     * @param scalar  the scalar multiplier
     * @param m1  the original matrix
     */
    public final void mul(double scalar, Matrix3d m1)
    {
        this.m00 = scalar * m1.m00;
        this.m01 = scalar * m1.m01;
        this.m02 = scalar * m1.m02;

        this.m10 = scalar * m1.m10;
        this.m11 = scalar * m1.m11;
        this.m12 = scalar * m1.m12;

        this.m20 = scalar * m1.m20;
        this.m21 = scalar * m1.m21;
        this.m22 = scalar * m1.m22;

    }

   /**
     * Sets the value of this matrix to the result of multiplying itself
     * with matrix m1.
     * @param m1 the other matrix
     */
    public final void mul(Matrix3d m1)
    {
            double      m00, m01, m02,
                        m10, m11, m12,
                        m20, m21, m22;

            m00 = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
            m01 = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
            m02 = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;

            m10 = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
            m11 = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
            m12 = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;

            m20 = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
            m21 = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
            m22 = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;

            this.m00 = m00; this.m01 = m01; this.m02 = m02;
            this.m10 = m10; this.m11 = m11; this.m12 = m12;
            this.m20 = m20; this.m21 = m21; this.m22 = m22;
    }

    /**
     * Sets the value of this matrix to the result of multiplying
     * the two argument matrices together.
     * @param m1 the first matrix
     * @param m2 the second matrix
     */
    public final void mul(Matrix3d m1, Matrix3d m2)
    {
	if (this != m1 && this != m2) {
            this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
            this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
            this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;

            this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
            this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
            this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;

            this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
            this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
            this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
	} else {
	    double	m00, m01, m02,
			m10, m11, m12,
		m20, m21, m22;  // vars for temp result matrix

            m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
            m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
            m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;

            m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
            m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
            m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;

            m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
            m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
            m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;

            this.m00 = m00; this.m01 = m01; this.m02 = m02;
            this.m10 = m10; this.m11 = m11; this.m12 = m12;
            this.m20 = m20; this.m21 = m21; this.m22 = m22;
	}
    }

   /**
     *  Multiplies this matrix by matrix m1, does an SVD normalization
     *  of the result, and places the result back into this matrix
     *  this = SVDnorm(this*m1).
     *  @param  m1   the matrix on the right hand side of the multiplication
     */
    public final void mulNormalize(Matrix3d m1){

	double[]    tmp = new double[9];  // scratch matrix
	double[]    tmp_rot = new double[9];  // scratch matrix
	double[]    tmp_scale = new double[3];  // scratch matrix

	tmp[0] = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
	tmp[1] = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
	tmp[2] = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;

	tmp[3] = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
	tmp[4] = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
	tmp[5] = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;

	tmp[6] = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
	tmp[7] = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
	tmp[8] = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;

	compute_svd( tmp, tmp_scale, tmp_rot);

	this.m00 = tmp_rot[0];
	this.m01 = tmp_rot[1];
	this.m02 = tmp_rot[2];

	this.m10 = tmp_rot[3];
	this.m11 = tmp_rot[4];
	this.m12 = tmp_rot[5];

	this.m20 = tmp_rot[6];
	this.m21 = tmp_rot[7];
	this.m22 = tmp_rot[8];

    }


   /**
     *  Multiplies matrix m1 by matrix m2, does an SVD normalization
     *  of the result, and places the result into this matrix
     *  this = SVDnorm(m1*m2).
     *  @param  m1  the matrix on the left hand side of the multiplication
     *  @param  m2  the matrix on the right hand side of the multiplication
     */
    public final void mulNormalize(Matrix3d m1, Matrix3d m2){

	double[]    tmp = new double[9];  // scratch matrix
	double[]    tmp_rot = new double[9];  // scratch matrix
	double[]    tmp_scale = new double[3];  // scratch matrix

	tmp[0] = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
	tmp[1] = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
	tmp[2] = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;

	tmp[3] = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
	tmp[4] = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
	tmp[5] = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;

	tmp[6] = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
	tmp[7] = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
	tmp[8] = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;

	compute_svd( tmp, tmp_scale, tmp_rot);

	this.m00 = tmp_rot[0];
	this.m01 = tmp_rot[1];
	this.m02 = tmp_rot[2];

	this.m10 = tmp_rot[3];
	this.m11 = tmp_rot[4];
	this.m12 = tmp_rot[5];

	this.m20 = tmp_rot[6];
	this.m21 = tmp_rot[7];
	this.m22 = tmp_rot[8];

    }

   /**
     *  Multiplies the transpose of matrix m1 times the transpose of matrix
     *  m2, and places the result into this.
     *  @param m1  the matrix on the left hand side of the multiplication
     *  @param m2  the matrix on the right hand side of the multiplication
     */
    public final void mulTransposeBoth(Matrix3d m1, Matrix3d m2)
    {
        if (this != m1 && this != m2) {
            this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
            this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
            this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;

            this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
            this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
            this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;

            this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
            this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
            this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
        } else {
            double      m00, m01, m02,
                        m10, m11, m12,
		m20, m21, m22;  // vars for temp result matrix

            m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
            m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
            m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;

            m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
            m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
            m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;

            m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
            m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
            m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;

            this.m00 = m00; this.m01 = m01; this.m02 = m02;
            this.m10 = m10; this.m11 = m11; this.m12 = m12;
            this.m20 = m20; this.m21 = m21; this.m22 = m22;
        }

    }

   /**
     *  Multiplies matrix m1 times the transpose of matrix m2, and
     *  places the result into this.
     *  @param m1  the matrix on the left hand side of the multiplication
     *  @param m2  the matrix on the right hand side of the multiplication
     */
    public final void mulTransposeRight(Matrix3d m1, Matrix3d m2)
  {
    if (this != m1 && this != m2) {
      this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
      this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
      this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;

      this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
      this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
      this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;

      this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
      this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
      this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
    } else {
      double	m00, m01, m02,
	m10, m11, m12,
	  m20, m21, m22;  // vars for temp result matrix

      m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
      m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
      m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;

      m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
      m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
      m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;

      m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
      m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
      m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;

      this.m00 = m00; this.m01 = m01; this.m02 = m02;
      this.m10 = m10; this.m11 = m11; this.m12 = m12;
      this.m20 = m20; this.m21 = m21; this.m22 = m22;
    }
  }


   /**
     *  Multiplies the transpose of matrix m1 times matrix m2, and
     *  places the result into this.
     *  @param m1  the matrix on the left hand side of the multiplication
     *  @param m2  the matrix on the right hand side of the multiplication
     */
    public final void mulTransposeLeft(Matrix3d m1, Matrix3d m2) {
	if (this != m1 && this != m2) {
            this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
            this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
            this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;

            this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
            this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
            this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;

            this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
            this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
            this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
	} else {
	    double	m00, m01, m02,
		        m10, m11, m12,
		m20, m21, m22;  // vars for temp result matrix

            m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
            m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
            m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;

            m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
            m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
            m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;

            m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
            m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
            m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;

            this.m00 = m00; this.m01 = m01; this.m02 = m02;
            this.m10 = m10; this.m11 = m11; this.m12 = m12;
            this.m20 = m20; this.m21 = m21; this.m22 = m22;
	}
    }



   /**
     * Performs singular value decomposition normalization of this matrix.
     */
    public final void normalize(){
	double[]    tmp_rot = new double[9];  // scratch matrix
	double[]    tmp_scale = new double[3];  // scratch matrix

	getScaleRotate( tmp_scale, tmp_rot );

	this.m00 = tmp_rot[0];
	this.m01 = tmp_rot[1];
	this.m02 = tmp_rot[2];

	this.m10 = tmp_rot[3];
	this.m11 = tmp_rot[4];
	this.m12 = tmp_rot[5];

	this.m20 = tmp_rot[6];
	this.m21 = tmp_rot[7];
	this.m22 = tmp_rot[8];

    }


   /**
     * Perform singular value decomposition normalization of matrix m1 and
     * place the normalized values into this.
     * @param m1  Provides the matrix values to be normalized
     */
    public final void normalize(Matrix3d m1){

	double[]    tmp = new double[9];  // scratch matrix
	double[]    tmp_rot = new double[9];  // scratch matrix
	double[]    tmp_scale = new double[3];  // scratch matrix

	tmp[0] = m1.m00;
	tmp[1] = m1.m01;
	tmp[2] = m1.m02;

	tmp[3] = m1.m10;
	tmp[4] = m1.m11;
	tmp[5] = m1.m12;

	tmp[6] = m1.m20;
	tmp[7] = m1.m21;
	tmp[8] = m1.m22;

	compute_svd( tmp, tmp_scale, tmp_rot);

	this.m00 = tmp_rot[0];
	this.m01 = tmp_rot[1];
	this.m02 = tmp_rot[2];

	this.m10 = tmp_rot[3];
	this.m11 = tmp_rot[4];
	this.m12 = tmp_rot[5];

	this.m20 = tmp_rot[6];
	this.m21 = tmp_rot[7];
	this.m22 = tmp_rot[8];
    }


   /**
     * Perform cross product normalization of this matrix.
     */

    public final void normalizeCP()
    {
       double mag = 1.0/Math.sqrt(m00*m00 + m10*m10 + m20*m20);
       m00 = m00*mag;
       m10 = m10*mag;
       m20 = m20*mag;

       mag = 1.0/Math.sqrt(m01*m01 + m11*m11 + m21*m21);
       m01 = m01*mag;
       m11 = m11*mag;
       m21 = m21*mag;

       m02 = m10*m21 - m11*m20;
       m12 = m01*m20 - m00*m21;
       m22 = m00*m11 - m01*m10;
    }


   /**
     * Perform cross product normalization of matrix m1 and place the
     * normalized values into this.
     * @param m1  Provides the matrix values to be normalized
     */
    public final void normalizeCP(Matrix3d m1)
    {
       double mag = 1.0/Math.sqrt(m1.m00*m1.m00 + m1.m10*m1.m10 + m1.m20*m1.m20);
       m00 = m1.m00*mag;
       m10 = m1.m10*mag;
       m20 = m1.m20*mag;

       mag = 1.0/Math.sqrt(m1.m01*m1.m01 + m1.m11*m1.m11 + m1.m21*m1.m21);
       m01 = m1.m01*mag;
       m11 = m1.m11*mag;
       m21 = m1.m21*mag;

       m02 = m10*m21 - m11*m20;
       m12 = m01*m20 - m00*m21;
       m22 = m00*m11 - m01*m10;
    }

   /**
     * Returns true if all of the data members of Matrix3d m1 are
     * equal to the corresponding data members in this Matrix3d.
     * @param m1  the matrix with which the comparison is made
     * @return  true or false
     */
    public boolean equals(Matrix3d m1)
    {
      try {
         return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02
            && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12
            && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22);
      }
      catch (NullPointerException e2) { return false; }

    }

   /**
     * Returns true if the Object t1 is of type Matrix3d and all of the
     * data members of t1 are equal to the corresponding data members in
     * this Matrix3d.
     * @param t1  the matrix with which the comparison is made
     * @return  true or false
     */
    @Override
    public boolean equals(Object t1)
    {
        try {
           Matrix3d m2 = (Matrix3d) t1;
           return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02
             && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12
             && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22);
        }
        catch (ClassCastException   e1) { return false; }
        catch (NullPointerException e2) { return false; }

    }

   /**
     * Returns true if the L-infinite distance between this matrix
     * and matrix m1 is less than or equal to the epsilon parameter,
     * otherwise returns false.  The L-infinite
     * distance is equal to
     * MAX[i=0,1,2 ; j=0,1,2 ; abs(this.m(i,j) - m1.m(i,j)]
     * @param m1  the matrix to be compared to this matrix
     * @param epsilon  the threshold value
     */
    public boolean epsilonEquals(Matrix3d m1, double epsilon)
    {
       double diff;

       diff = m00 - m1.m00;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m01 - m1.m01;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m02 - m1.m02;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m10 - m1.m10;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m11 - m1.m11;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m12 - m1.m12;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m20 - m1.m20;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m21 - m1.m21;
       if((diff<0?-diff:diff) > epsilon) return false;

       diff = m22 - m1.m22;
       if((diff<0?-diff:diff) > epsilon) return false;

       return true;
    }


    /**
     * Returns a hash code value based on the data values in this
     * object.  Two different Matrix3d objects with identical data values
     * (i.e., Matrix3d.equals returns true) will return the same hash
     * code value.  Two objects with different data members may return the
     * same hash value, although this is not likely.
     * @return the integer hash code value
     */
    @Override
    public int hashCode() {
	long bits = 1L;
	bits = VecMathUtil.hashDoubleBits(bits, m00);
	bits = VecMathUtil.hashDoubleBits(bits, m01);
	bits = VecMathUtil.hashDoubleBits(bits, m02);
	bits = VecMathUtil.hashDoubleBits(bits, m10);
	bits = VecMathUtil.hashDoubleBits(bits, m11);
	bits = VecMathUtil.hashDoubleBits(bits, m12);
	bits = VecMathUtil.hashDoubleBits(bits, m20);
	bits = VecMathUtil.hashDoubleBits(bits, m21);
	bits = VecMathUtil.hashDoubleBits(bits, m22);
	return VecMathUtil.hashFinish(bits);
    }


  /**
    *  Sets this matrix to all zeros.
    */
   public final void setZero()
   {
        m00 = 0.0;
        m01 = 0.0;
        m02 = 0.0;

        m10 = 0.0;
        m11 = 0.0;
        m12 = 0.0;

        m20 = 0.0;
        m21 = 0.0;
        m22 = 0.0;

   }

   /**
     * Negates the value of this matrix: this = -this.
     */
    public final void negate()
    {
        this.m00 = -this.m00;
        this.m01 = -this.m01;
        this.m02 = -this.m02;

        this.m10 = -this.m10;
        this.m11 = -this.m11;
        this.m12 = -this.m12;

        this.m20 = -this.m20;
        this.m21 = -this.m21;
        this.m22 = -this.m22;

    }

   /**
     *  Sets the value of this matrix equal to the negation of
     *  of the Matrix3d parameter.
     *  @param m1  the source matrix
     */
    public final void negate(Matrix3d m1)
    {
        this.m00 = -m1.m00;
        this.m01 = -m1.m01;
        this.m02 = -m1.m02;

        this.m10 = -m1.m10;
        this.m11 = -m1.m11;
        this.m12 = -m1.m12;

        this.m20 = -m1.m20;
        this.m21 = -m1.m21;
        this.m22 = -m1.m22;

    }

   /**
     * Multiply this matrix by the tuple t and place the result
     * back into the tuple (t = this*t).
     * @param t  the tuple to be multiplied by this matrix and then replaced
     */
    public final void transform(Tuple3d t) {
     double x,y,z;
     x = m00* t.x + m01*t.y + m02*t.z;
     y = m10* t.x + m11*t.y + m12*t.z;
     z = m20* t.x + m21*t.y + m22*t.z;
     t.set(x,y,z);
    }

   /**
     * Multiply this matrix by the tuple t and and place the result
     * into the tuple "result" (result = this*t).
     * @param t  the tuple to be multiplied by this matrix
     * @param result  the tuple into which the product is placed
     */
    public final void transform(Tuple3d t, Tuple3d result) {
     double x,y,z;
        x = m00* t.x + m01*t.y + m02*t.z;
        y = m10* t.x + m11*t.y + m12*t.z;
        result.z = m20* t.x + m21*t.y + m22*t.z;
        result.x = x;
        result.y = y;
    }

    /**
     * perform SVD (if necessary to get rotational component
     */
    final void getScaleRotate(double scales[], double rots[]) {

	double[]    tmp = new double[9];  // scratch matrix

	tmp[0] = m00;
	tmp[1] = m01;
	tmp[2] = m02;

	tmp[3] = m10;
	tmp[4] = m11;
	tmp[5] = m12;

	tmp[6] = m20;
	tmp[7] = m21;
	tmp[8] = m22;
	compute_svd( tmp, scales, rots);

	return;
    }

    static void compute_svd( double[] m, double[] outScale, double[] outRot) {
	int i,j;
	double g,scale;
	double[] u1 = new double[9];
	double[] v1 = new double[9];
	double[] t1 = new double[9];
	double[] t2 = new double[9];

	double[] tmp = t1;
	double[] single_values = t2;

	double[] rot = new double[9];
	double[] e = new double[3];
	double[] scales = new double[3];

	int converged, negCnt=0;
	double cs,sn;
	double c1,c2,c3,c4;
	double s1,s2,s3,s4;
	double cl1,cl2,cl3;


	for(i=0; i<9; i++)
	    rot[i] = m[i];

	// u1

	if( m[3]*m[3] < EPS ) {
	    u1[0] = 1.0; u1[1] = 0.0; u1[2] = 0.0;
	    u1[3] = 0.0; u1[4] = 1.0; u1[5] = 0.0;
	    u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0;
	} else if( m[0]*m[0] < EPS ) {
	    tmp[0] = m[0];
	    tmp[1] = m[1];
	    tmp[2] = m[2];
	    m[0] = m[3];
	    m[1] = m[4];
	    m[2] = m[5];

	    m[3] = -tmp[0]; // zero
	    m[4] = -tmp[1];
	    m[5] = -tmp[2];

	    u1[0] =  0.0; u1[1] = 1.0;  u1[2] = 0.0;
	    u1[3] = -1.0; u1[4] = 0.0;  u1[5] = 0.0;
	    u1[6] =  0.0; u1[7] = 0.0;  u1[8] = 1.0;
	} else {
	    g = 1.0/Math.sqrt(m[0]*m[0] + m[3]*m[3]);
	    c1 = m[0]*g;
	    s1 = m[3]*g;
	    tmp[0] = c1*m[0] + s1*m[3];
	    tmp[1] = c1*m[1] + s1*m[4];
	    tmp[2] = c1*m[2] + s1*m[5];

	    m[3] = -s1*m[0] + c1*m[3]; // zero
	    m[4] = -s1*m[1] + c1*m[4];
	    m[5] = -s1*m[2] + c1*m[5];

	    m[0] = tmp[0];
	    m[1] = tmp[1];
	    m[2] = tmp[2];
	    u1[0] = c1;  u1[1] = s1;  u1[2] = 0.0;
	    u1[3] = -s1; u1[4] = c1;  u1[5] = 0.0;
	    u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0;
	}

	// u2

	if( m[6]*m[6] < EPS  ) {
	} else if( m[0]*m[0] < EPS ){
	    tmp[0] = m[0];
	    tmp[1] = m[1];
	    tmp[2] = m[2];
	    m[0] = m[6];
	    m[1] = m[7];
	    m[2] = m[8];

	    m[6] = -tmp[0]; // zero
	    m[7] = -tmp[1];
	    m[8] = -tmp[2];

	    tmp[0] = u1[0];
	    tmp[1] = u1[1];
	    tmp[2] = u1[2];
	    u1[0] = u1[6];
	    u1[1] = u1[7];
	    u1[2] = u1[8];

	    u1[6] = -tmp[0]; // zero
	    u1[7] = -tmp[1];
	    u1[8] = -tmp[2];
	} else {
	    g = 1.0/Math.sqrt(m[0]*m[0] + m[6]*m[6]);
	    c2 = m[0]*g;
	    s2 = m[6]*g;
	    tmp[0] = c2*m[0] + s2*m[6];
	    tmp[1] = c2*m[1] + s2*m[7];
	    tmp[2] = c2*m[2] + s2*m[8];

	    m[6] = -s2*m[0] + c2*m[6];
	    m[7] = -s2*m[1] + c2*m[7];
	    m[8] = -s2*m[2] + c2*m[8];
	    m[0] = tmp[0];
	    m[1] = tmp[1];
	    m[2] = tmp[2];

	    tmp[0] = c2*u1[0];
	    tmp[1] = c2*u1[1];
	    u1[2]  = s2;

	    tmp[6] = -u1[0]*s2;
	    tmp[7] = -u1[1]*s2;
	    u1[8] = c2;
	    u1[0] = tmp[0];
	    u1[1] = tmp[1];
	    u1[6] = tmp[6];
	    u1[7] = tmp[7];
	}

	// v1

	if( m[2]*m[2] < EPS ) {
	    v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0;
	    v1[3] = 0.0; v1[4] = 1.0; v1[5] = 0.0;
	    v1[6] = 0.0; v1[7] = 0.0; v1[8] = 1.0;
	} else if( m[1]*m[1] < EPS ) {
	    tmp[2] = m[2];
	    tmp[5] = m[5];
	    tmp[8] = m[8];
	    m[2] = -m[1];
	    m[5] = -m[4];
	    m[8] = -m[7];

	    m[1] = tmp[2]; // zero
	    m[4] = tmp[5];
	    m[7] = tmp[8];

	    v1[0] =  1.0; v1[1] = 0.0;  v1[2] = 0.0;
	    v1[3] =  0.0; v1[4] = 0.0;  v1[5] =-1.0;
	    v1[6] =  0.0; v1[7] = 1.0;  v1[8] = 0.0;
	} else {
	    g = 1.0/Math.sqrt(m[1]*m[1] + m[2]*m[2]);
	    c3 = m[1]*g;
	    s3 = m[2]*g;
	    tmp[1] = c3*m[1] + s3*m[2];  // can assign to m[1]?
	    m[2] =-s3*m[1] + c3*m[2];  // zero
	    m[1] = tmp[1];

	    tmp[4] = c3*m[4] + s3*m[5];
	    m[5] =-s3*m[4] + c3*m[5];
	    m[4] = tmp[4];

	    tmp[7] = c3*m[7] + s3*m[8];
	    m[8] =-s3*m[7] + c3*m[8];
	    m[7] = tmp[7];

	    v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0;
	    v1[3] = 0.0; v1[4] =  c3; v1[5] = -s3;
	    v1[6] = 0.0; v1[7] =  s3; v1[8] =  c3;
	}

	// u3

	if( m[7]*m[7] < EPS ) {
	} else if( m[4]*m[4] < EPS ) {
	    tmp[3] = m[3];
	    tmp[4] = m[4];
	    tmp[5] = m[5];
	    m[3] = m[6];   // zero
	    m[4] = m[7];
	    m[5] = m[8];

	    m[6] = -tmp[3]; // zero
	    m[7] = -tmp[4]; // zero
	    m[8] = -tmp[5];

	    tmp[3] = u1[3];
	    tmp[4] = u1[4];
	    tmp[5] = u1[5];
	    u1[3] = u1[6];
	    u1[4] = u1[7];
	    u1[5] = u1[8];

	    u1[6] = -tmp[3]; // zero
	    u1[7] = -tmp[4];
	    u1[8] = -tmp[5];

	} else {
	    g = 1.0/Math.sqrt(m[4]*m[4] + m[7]*m[7]);
	    c4 = m[4]*g;
	    s4 = m[7]*g;
	    tmp[3] = c4*m[3] + s4*m[6];
	    m[6] =-s4*m[3] + c4*m[6];  // zero
	    m[3] = tmp[3];

	    tmp[4] = c4*m[4] + s4*m[7];
	    m[7] =-s4*m[4] + c4*m[7];
	    m[4] = tmp[4];

	    tmp[5] = c4*m[5] + s4*m[8];
	    m[8] =-s4*m[5] + c4*m[8];
	    m[5] = tmp[5];

	    tmp[3] = c4*u1[3] + s4*u1[6];
	    u1[6] =-s4*u1[3] + c4*u1[6];
	    u1[3] = tmp[3];

	    tmp[4] = c4*u1[4] + s4*u1[7];
	    u1[7] =-s4*u1[4] + c4*u1[7];
	    u1[4] = tmp[4];

	    tmp[5] = c4*u1[5] + s4*u1[8];
	    u1[8] =-s4*u1[5] + c4*u1[8];
	    u1[5] = tmp[5];
	}

	single_values[0] = m[0];
	single_values[1] = m[4];
	single_values[2] = m[8];
	e[0] = m[1];
	e[1] = m[5];

	if( e[0]*e[0] scales[1]) {
		if( scales[0] > scales[2] ) {
		    if( scales[2] > scales[1] ) {
			out[0] = 0; out[1] = 2; out[2] = 1; // xzy
		    } else {
			out[0] = 0; out[1] = 1; out[2] = 2; // xyz
		    }
		} else {
		    out[0] = 2; out[1] = 0; out[2] = 1; // zxy
		}
	    } else {  // y > x
		if( scales[1] > scales[2] ) {
		    if( scales[2] > scales[0] ) {
			out[0] = 1; out[1] = 2; out[2] = 0; // yzx
		    } else {
			out[0] = 1; out[1] = 0; out[2] = 2; // yxz
		    }
		} else  {
		    out[0] = 2; out[1] = 1; out[2] = 0; // zyx
		}
	    }

	    /*
		System.out.println("\nscales="+scales[0]+" "+scales[1]+" "+scales[2]);
		System.out.println("\nrot="+rot[0]+" "+rot[1]+" "+rot[2]);
		System.out.println("rot="+rot[3]+" "+rot[4]+" "+rot[5]);
		System.out.println("rot="+rot[6]+" "+rot[7]+" "+rot[8]);
		*/

	    // sort the order of the input matrix
	    mag[0] = (m[0]*m[0] + m[1]*m[1] + m[2]*m[2]);
	    mag[1] = (m[3]*m[3] + m[4]*m[4] + m[5]*m[5]);
	    mag[2] = (m[6]*m[6] + m[7]*m[7] + m[8]*m[8]);

	    if( mag[0] > mag[1]) {
		if( mag[0] > mag[2] ) {
		    if( mag[2] > mag[1] )  {
			// 0 - 2 - 1
			in0 = 0; in2 = 1; in1 = 2;// xzy
		    } else {
			// 0 - 1 - 2
			in0 = 0; in1 = 1; in2 = 2; // xyz
		    }
		} else {
		    // 2 - 0 - 1
		    in2 = 0; in0 = 1; in1 = 2;  // zxy
		}
	    } else {  // y > x   1>0
		if( mag[1] > mag[2] ) {
		    if( mag[2] > mag[0] )  {
			// 1 - 2 - 0
			in1 = 0; in2 = 1; in0 = 2; // yzx
		    } else {
			// 1 - 0 - 2
			in1 = 0; in0 = 1; in2 = 2; // yxz
		    }
		} else  {
		    // 2 - 1 - 0
		    in2 = 0; in1 = 1; in0 = 2; // zyx
		}
	    }


	    index = out[in0];
	    outScale[0] = scales[index];

	    index = out[in1];
	    outScale[1] = scales[index];

	    index = out[in2];
	    outScale[2] = scales[index];


	    index = out[in0];
	    outRot[0] = rot[index];

	    index = out[in0]+3;
	    outRot[0+3] = rot[index];

	    index = out[in0]+6;
	    outRot[0+6] = rot[index];

	    index = out[in1];
	    outRot[1] = rot[index];

	    index = out[in1]+3;
	    outRot[1+3] = rot[index];

	    index = out[in1]+6;
	    outRot[1+6] = rot[index];

	    index = out[in2];
	    outRot[2] = rot[index];

	    index = out[in2]+3;
	    outRot[2+3] = rot[index];

	    index = out[in2]+6;
	    outRot[2+6] = rot[index];
	}
    }

    static  int compute_qr( double[] s, double[] e, double[] u, double[] v) {

	int i,j,k;
	boolean converged;
	double shift,ssmin,ssmax,r;
	double[]   cosl  = new double[2];
	double[]   cosr  = new double[2];
	double[]   sinl  = new double[2];
	double[]   sinr  = new double[2];
	double[]   m = new double[9];

	double utemp,vtemp;
	double f,g;

	final int MAX_INTERATIONS = 10;
	final double CONVERGE_TOL = 4.89E-15;

	double c_b48 = 1.;
	double c_b71 = -1.;
	int first;
	converged = false;


	first = 1;

	if( Math.abs(e[1]) < CONVERGE_TOL || Math.abs(e[0]) < CONVERGE_TOL) converged = true;

	for(k=0;k b)
      return( a);
    else
      return( b);
}
static double min( double a, double b) {
    if( a < b)
      return( a);
    else
      return( b);
}
static double d_sign(double a, double b) {
double x;
x = (a >= 0 ? a : - a);
return( b >= 0 ? x : -x);
}

static double compute_shift( double f, double g, double h) {
    double d__1, d__2;
    double fhmn, fhmx, c, fa, ga, ha, as, at, au;
    double ssmin;

    fa = Math.abs(f);
    ga = Math.abs(g);
    ha = Math.abs(h);
    fhmn = min(fa,ha);
    fhmx = max(fa,ha);
    if (fhmn == 0.) {
        ssmin = 0.;
        if (fhmx == 0.) {
        } else {
            d__1 = min(fhmx,ga) / max(fhmx,ga);
        }
    } else {
        if (ga < fhmx) {
            as = fhmn / fhmx + 1.;
            at = (fhmx - fhmn) / fhmx;
            d__1 = ga / fhmx;
            au = d__1 * d__1;
            c = 2. / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au));
            ssmin = fhmn * c;
        } else {
            au = fhmx / ga;
            if (au == 0.) {
                ssmin = fhmn * fhmx / ga;
            } else {
                as = fhmn / fhmx + 1.;
                at = (fhmx - fhmn) / fhmx;
                d__1 = as * au;
                d__2 = at * au;
                c = 1. / (Math.sqrt(d__1 * d__1 + 1.) + Math.sqrt(d__2 * d__2 + 1.));
                ssmin = fhmn * c * au;
                ssmin += ssmin;
            }
        }
    }

    return(ssmin);
}
static int compute_2X2( double f, double g, double h, double[] single_values,
                double[] snl, double[] csl, double[] snr, double[] csr, int index)  {

    double c_b3 = 2.;
    double c_b4 = 1.;

    double d__1;
    int pmax;
    double temp;
    boolean swap;
    double a, d, l, m, r, s, t, tsign, fa, ga, ha;
    double ft, gt, ht, mm;
    boolean gasmal;
    double tt, clt, crt, slt, srt;
    double ssmin,ssmax;

    ssmax = single_values[0];
    ssmin = single_values[1];
    clt = 0.0;
    crt = 0.0;
    slt = 0.0;
    srt = 0.0;
    tsign = 0.0;

    ft = f;
    fa = Math.abs(ft);
    ht = h;
    ha = Math.abs(h);

    pmax = 1;
    if( ha > fa)
       swap = true;
    else
       swap = false;

    if (swap) {
        pmax = 3;
        temp = ft;
        ft = ht;
        ht = temp;
        temp = fa;
        fa = ha;
        ha = temp;

    }
    gt = g;
    ga = Math.abs(gt);
    if (ga == 0.) {

        single_values[1] = ha;
        single_values[0] = fa;
        clt = 1.;
        crt = 1.;
        slt = 0.;
        srt = 0.;
    } else {
        gasmal = true;

       if (ga > fa) {
            pmax = 2;
            if (fa / ga < EPS) {

                gasmal = false;
                ssmax = ga;
                if (ha > 1.) {
                    ssmin = fa / (ga / ha);
                } else {
                    ssmin = fa / ga * ha;
                }
                clt = 1.;
                slt = ht / gt;
                srt = 1.;
                crt = ft / gt;
            }
        }
        if (gasmal) {

            d = fa - ha;
            if (d == fa) {

                l = 1.;
            } else {
                l = d / fa;
            }

            m = gt / ft;

            t = 2. - l;

            mm = m * m;
            tt = t * t;
            s = Math.sqrt(tt + mm);

            if (l == 0.) {
                r = Math.abs(m);
            } else {
                r = Math.sqrt(l * l + mm);
            }

            a = (s + r) * .5;

       if (ga > fa) {
            pmax = 2;
            if (fa / ga < EPS) {

                gasmal = false;
                ssmax = ga;
                if (ha > 1.) {
                    ssmin = fa / (ga / ha);
                } else {
                    ssmin = fa / ga * ha;
                }
                clt = 1.;
                slt = ht / gt;
                srt = 1.;
                crt = ft / gt;
            }
        }
        if (gasmal) {

            d = fa - ha;
            if (d == fa) {

                l = 1.;
            } else {
                l = d / fa;
            }

            m = gt / ft;

            t = 2. - l;

            mm = m * m;
            tt = t * t;
            s = Math.sqrt(tt + mm);

            if (l == 0.) {
                r = Math.abs(m);
            } else {
                r = Math.sqrt(l * l + mm);
            }

            a = (s + r) * .5;


            ssmin = ha / a;
            ssmax = fa * a;
            if (mm == 0.) {

                if (l == 0.) {
                    t = d_sign(c_b3, ft) * d_sign(c_b4, gt);
                } else {
                    t = gt / d_sign(d, ft) + m / t;
                }
            } else {
                t = (m / (s + t) + m / (r + l)) * (a + 1.);
            }
            l = Math.sqrt(t * t + 4.);
            crt = 2. / l;
            srt = t / l;
            clt = (crt + srt * m) / a;
            slt = ht / ft * srt / a;
        }
    }
    if (swap) {
        csl[0] = srt;
        snl[0] = crt;
        csr[0] = slt;
        snr[0] = clt;
    } else {
        csl[0] = clt;
        snl[0] = slt;
        csr[0] = crt;
        snr[0] = srt;
    }

    if (pmax == 1) {
        tsign = d_sign(c_b4, csr[0]) * d_sign(c_b4, csl[0]) * d_sign(c_b4, f);
    }
    if (pmax == 2) {
        tsign = d_sign(c_b4, snr[0]) * d_sign(c_b4, csl[0]) * d_sign(c_b4, g);
    }
    if (pmax == 3) {
        tsign = d_sign(c_b4, snr[0]) * d_sign(c_b4, snl[0]) * d_sign(c_b4, h);
    }
    single_values[index] = d_sign(ssmax, tsign);
    d__1 = tsign * d_sign(c_b4, f) * d_sign(c_b4, h);
    single_values[index+1] = d_sign(ssmin, d__1);


   }
    return 0;
 }
  static double compute_rot( double f, double g, double[] sin, double[] cos, int index, int first) {
    int i__1;
    double d__1, d__2;
    double cs,sn;
    int i;
    double scale;
    int count;
    double f1, g1;
    double r;
    final double safmn2 = 2.002083095183101E-146;
    final double safmx2 = 4.994797680505588E+145;

    if (g == 0.) {
        cs = 1.;
        sn = 0.;
        r = f;
    } else if (f == 0.) {
        cs = 0.;
        sn = 1.;
        r = g;
    } else {
        f1 = f;
        g1 = g;
        scale = max(Math.abs(f1),Math.abs(g1));
        if (scale >= safmx2) {
            count = 0;
            while(scale >= safmx2) {
               ++count;
               f1 *= safmn2;
               g1 *= safmn2;
               scale = max(Math.abs(f1),Math.abs(g1));
            }
            r = Math.sqrt(f1*f1 + g1*g1);
            cs = f1 / r;
            sn = g1 / r;
            i__1 = count;
            for (i = 1; i <= count; ++i) {
                r *= safmx2;
            }
        } else if (scale <= safmn2) {
            count = 0;
            while(scale <= safmn2) {
               ++count;
               f1 *= safmx2;
               g1 *= safmx2;
               scale = max(Math.abs(f1),Math.abs(g1));
            }
            r = Math.sqrt(f1*f1 + g1*g1);
            cs = f1 / r;
            sn = g1 / r;
            i__1 = count;
            for (i = 1; i <= count; ++i) {
                r *= safmn2;
            }
        } else {
            r = Math.sqrt(f1*f1 + g1*g1);
            cs = f1 / r;
            sn = g1 / r;
        }
        if (Math.abs(f) > Math.abs(g) && cs < 0.) {
            cs = -cs;
            sn = -sn;
            r = -r;
        }
    }
    sin[index] = sn;
    cos[index] = cs;
    return r;

  }
static void print_mat( double[]  mat) {
int i;
  for(i=0;i<3;i++){
    System.out.println(mat[i*3+0]+" "+mat[i*3+1]+" "+mat[i*3+2]+"\n");
  }

}
static void print_det( double[] mat) {
double det;

  det = mat[0]*mat[4]*mat[8] +
        mat[1]*mat[5]*mat[6] +
        mat[2]*mat[3]*mat[7] -
        mat[2]*mat[4]*mat[6] -
        mat[0]*mat[5]*mat[7] -
        mat[1]*mat[3]*mat[8];
  System.out.println("det= "+det);
}
static void  mat_mul(double[] m1, double[] m2, double[] m3) {
  int i;
  double[] tmp = new double[9];

    tmp[0] =  m1[0]*m2[0] + m1[1]*m2[3] + m1[2]*m2[6];
    tmp[1] =  m1[0]*m2[1] + m1[1]*m2[4] + m1[2]*m2[7];
    tmp[2] =  m1[0]*m2[2] + m1[1]*m2[5] + m1[2]*m2[8];

    tmp[3] =  m1[3]*m2[0] + m1[4]*m2[3] + m1[5]*m2[6];
    tmp[4] =  m1[3]*m2[1] + m1[4]*m2[4] + m1[5]*m2[7];
    tmp[5] =  m1[3]*m2[2] + m1[4]*m2[5] + m1[5]*m2[8];

    tmp[6] =  m1[6]*m2[0] + m1[7]*m2[3] + m1[8]*m2[6];
    tmp[7] =  m1[6]*m2[1] + m1[7]*m2[4] + m1[8]*m2[7];
    tmp[8] =  m1[6]*m2[2] + m1[7]*m2[5] + m1[8]*m2[8];

    for(i=0;i<9;i++) {
       m3[i] = tmp[i];
    }
}
static void  transpose_mat(double[] in, double[] out) {
       out[0] = in[0];
       out[1] = in[3];
       out[2] = in[6];

       out[3] = in[1];
       out[4] = in[4];
       out[5] = in[7];

       out[6] = in[2];
       out[7] = in[5];
       out[8] = in[8];
}
static  double max3( double[] values) {
     if( values[0] > values[1] ) {
        if( values[0] > values[2] )
           return(values[0]);
        else
           return(values[2]);
     } else {
        if( values[1] > values[2] )
           return(values[1]);
        else
           return(values[2]);
     }
  }

    private static final boolean almostEqual(double a, double b) {
        if (a == b)
            return true;

        final double EPSILON_ABSOLUTE = 1.0e-6;
        final double EPSILON_RELATIVE = 1.0e-4;
        double diff = Math.abs(a-b);
        double absA = Math.abs(a);
        double absB = Math.abs(b);
        double max = (absA >= absB) ? absA : absB;

        if (diff < EPSILON_ABSOLUTE)
            return true;

        if ((diff / max) < EPSILON_RELATIVE)
            return true;

        return false;
    }

    /**
     * Creates a new object of the same class as this object.
     *
     * @return a clone of this instance.
     * @exception OutOfMemoryError if there is not enough memory.
     * @see java.lang.Cloneable
     * @since vecmath 1.3
     */
    @Override
    public Object clone() {
	Matrix3d m1 = null;
	try {
	    m1 = (Matrix3d)super.clone();
	} catch (CloneNotSupportedException e) {
	    // this shouldn't happen, since we are Cloneable
	    throw new InternalError();
	}

	// Also need to create new tmp arrays (no need to actually clone them)
	return m1;
    }

	/**
	 * Get the first matrix element in the first row.
	 * @return Returns the m00.
	 * @since vecmath 1.5
	 */
	public final  double getM00() {
		return m00;
	}

	/**
	 * Set the first matrix element in the first row.
	 *
	 * @param m00 The m00 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final  void setM00(double m00) {
		this.m00 = m00;
	}

	/**
	 * Get the second matrix element in the first row.
	 *
	 * @return Returns the m01.
	 *
	 * @since vecmath 1.5
	 */
	public final  double getM01() {
		return m01;
	}

	/**
	 * Set the second matrix element in the first row.
	 *
	 * @param m01 The m01 to set.
	 *
	 * @since vecmath 1.5
	 */
	public  final void setM01(double m01) {
		this.m01 = m01;
	}

	/**
	 * Get the third matrix element in the first row.
	 *
	 * @return Returns the m02.
	 *
	 * @since vecmath 1.5
	 */
	public final double getM02() {
		return m02;
	}

	/**
	 * Set the third matrix element in the first row.
	 *
	 * @param m02 The m02 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final  void setM02(double m02) {
		this.m02 = m02;
	}

	/**
	 * Get first matrix element in the second row.
	 *
	 * @return Returns the m10.
	 *
	 * @since vecmath 1.5
	 */
	public final  double getM10() {
		return m10;
	}

	/**
	 * Set first matrix element in the second row.
	 *
	 * @param m10 The m10 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final  void setM10(double m10) {
		this.m10 = m10;
	}

	/**
	 * Get second matrix element in the second row.
	 *
	 * @return Returns the m11.
	 *
	 * @since vecmath 1.5
	 */
	public final  double getM11() {
		return m11;
	}

	/**
	 * Set the second matrix element in the second row.
	 *
	 * @param m11 The m11 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final  void setM11(double m11) {
		this.m11 = m11;
	}

	/**
	 * Get the third matrix element in the second row.
	 *
	 * @return Returns the m12.
	 *
	 * @since vecmath 1.5
	 */
	public final  double getM12() {
		return m12;
	}

	/**
	 * Set the third matrix element in the second row.
	 *
	 * @param m12 The m12 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final  void setM12(double m12) {
		this.m12 = m12;
	}

	/**
	 * Get the first matrix element in the third row.
	 *
	 * @return Returns the m20.
	 *
	 * @since vecmath 1.5
	 */
	public final  double getM20() {
		return m20;
	}

	/**
	 * Set the first matrix element in the third row.
	 *
	 * @param m20 The m20 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final void setM20(double m20) {
		this.m20 = m20;
	}

	/**
	 * Get the second matrix element in the third row.
	 *
	 * @return Returns the m21.
	 *
	 * @since vecmath 1.5
	 */
	public final double getM21() {
		return m21;
	}

	/**
	 * Set the second matrix element in the third row.
	 *
	 * @param m21 The m21 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final void setM21(double m21) {
		this.m21 = m21;
	}

	/**
	 * Get the third matrix element in the third row .
	 *
	 * @return Returns the m22.
	 *
	 * @since vecmath 1.5
	 */
	public final double getM22() {
		return m22;
	}

	/**
	 * Set the third matrix element in the third row.
	 *
	 * @param m22 The m22 to set.
	 *
	 * @since vecmath 1.5
	 */
	public final void setM22(double m22) {
		this.m22 = m22;
	}

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy