All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.evosuite.ga.metaheuristics.StandardGA Maven / Gradle / Ivy

/**
 * Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
 * contributors
 *
 * This file is part of EvoSuite.
 *
 * EvoSuite is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3.0 of the License, or
 * (at your option) any later version.
 *
 * EvoSuite is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EvoSuite. If not, see .
 */
package org.evosuite.ga.metaheuristics;

import java.util.ArrayList;
import java.util.List;

import org.evosuite.Properties;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.ConstructionFailedException;
import org.evosuite.ga.FitnessFunction;
import org.evosuite.utils.Randomness;


/**
 * Standard GA implementation
 *
 * @author Gordon Fraser
 */
public class StandardGA extends GeneticAlgorithm {

	private static final long serialVersionUID = 5043503777821916152L;
	
	private final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(StandardGA.class);

	/**
	 * Constructor
	 *
	 * @param factory a {@link org.evosuite.ga.ChromosomeFactory} object.
	 */
	public StandardGA(ChromosomeFactory factory) {
		super(factory);
	}

	/** {@inheritDoc} */
	@SuppressWarnings("unchecked")
	@Override
	protected void evolve() {

		List newGeneration = new ArrayList();

		// Elitism
		newGeneration.addAll(elitism());
		
		// new_generation.size() < population_size
		while (!isNextPopulationFull(newGeneration)) {

			T parent1 = selectionFunction.select(population);
			T parent2 = selectionFunction.select(population);

			T offspring1 = (T)parent1.clone();
			T offspring2 = (T)parent2.clone();

			try {
				if (Randomness.nextDouble() <= Properties.CROSSOVER_RATE) {
					crossoverFunction.crossOver(offspring1, offspring2);
				}

				notifyMutation(offspring1);
				offspring1.mutate();
				notifyMutation(offspring2);
				offspring2.mutate();
				
				if(offspring1.isChanged()) {
					offspring1.updateAge(currentIteration);
				}
				if(offspring2.isChanged()) {
					offspring2.updateAge(currentIteration);
				}
			} catch (ConstructionFailedException e) {
				logger.info("CrossOver/Mutation failed.");
				continue;
			}

			if (!isTooLong(offspring1))
				newGeneration.add(offspring1);
			else
				newGeneration.add(parent1);

			if (!isTooLong(offspring2))
				newGeneration.add(offspring2);
			else
				newGeneration.add(parent2);
		}

		population = newGeneration;
        //archive
        updateFitnessFunctionsAndValues();
		//
		currentIteration++;
	}

	/** {@inheritDoc} */
	@Override
	public void initializePopulation() {
		notifySearchStarted();
		currentIteration = 0;

		// Set up initial population
		generateInitialPopulation(Properties.POPULATION);
		// Determine fitness
		calculateFitnessAndSortPopulation();
		this.notifyIteration();
	}

	/** {@inheritDoc} */
	@Override
	public void generateSolution() {
		if (Properties.ENABLE_SECONDARY_OBJECTIVE_AFTER > 0
				|| Properties.ENABLE_SECONDARY_OBJECTIVE_STARVATION) {
			disableFirstSecondaryCriterion();
		}
		if (population.isEmpty())
			initializePopulation();

		logger.debug("Starting evolution");
		int starvationCounter = 0;
		double bestFitness = Double.MAX_VALUE;
		double lastBestFitness = Double.MAX_VALUE;
		if (getFitnessFunction().isMaximizationFunction()){
			bestFitness = 0.0;
			lastBestFitness = 0.0;
		} 
		
		while (!isFinished()) {
			logger.debug("Current population: " + getAge() + "/" + Properties.SEARCH_BUDGET);
			logger.info("Best fitness: " + getBestIndividual().getFitness());
			
			evolve();
			// Determine fitness
			calculateFitnessAndSortPopulation();

			applyLocalSearch();

			double newFitness = getBestIndividual().getFitness();

			if (getFitnessFunction().isMaximizationFunction())
				assert (newFitness >= bestFitness) : "best fitness was: " + bestFitness
						+ ", now best fitness is " + newFitness;
			else
				assert (newFitness <= bestFitness) : "best fitness was: " + bestFitness
						+ ", now best fitness is " + newFitness;
			bestFitness = newFitness;
			
			if (Double.compare(bestFitness, lastBestFitness) == 0) {
				starvationCounter++;
			} else {
				logger.info("reset starvationCounter after " + starvationCounter + " iterations");
				starvationCounter = 0;
				lastBestFitness = bestFitness;
				
			}
			
			updateSecondaryCriterion(starvationCounter);
			
			this.notifyIteration();
		}
		
		updateBestIndividualFromArchive();
		notifySearchFinished();
	}

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy