org.evosuite.ga.metaheuristics.StandardGA Maven / Gradle / Ivy
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics;
import java.util.ArrayList;
import java.util.List;
import org.evosuite.Properties;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.ConstructionFailedException;
import org.evosuite.ga.FitnessFunction;
import org.evosuite.utils.Randomness;
/**
* Standard GA implementation
*
* @author Gordon Fraser
*/
public class StandardGA extends GeneticAlgorithm {
private static final long serialVersionUID = 5043503777821916152L;
private final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(StandardGA.class);
/**
* Constructor
*
* @param factory a {@link org.evosuite.ga.ChromosomeFactory} object.
*/
public StandardGA(ChromosomeFactory factory) {
super(factory);
}
/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
protected void evolve() {
List newGeneration = new ArrayList();
// Elitism
newGeneration.addAll(elitism());
// new_generation.size() < population_size
while (!isNextPopulationFull(newGeneration)) {
T parent1 = selectionFunction.select(population);
T parent2 = selectionFunction.select(population);
T offspring1 = (T)parent1.clone();
T offspring2 = (T)parent2.clone();
try {
if (Randomness.nextDouble() <= Properties.CROSSOVER_RATE) {
crossoverFunction.crossOver(offspring1, offspring2);
}
notifyMutation(offspring1);
offspring1.mutate();
notifyMutation(offspring2);
offspring2.mutate();
if(offspring1.isChanged()) {
offspring1.updateAge(currentIteration);
}
if(offspring2.isChanged()) {
offspring2.updateAge(currentIteration);
}
} catch (ConstructionFailedException e) {
logger.info("CrossOver/Mutation failed.");
continue;
}
if (!isTooLong(offspring1))
newGeneration.add(offspring1);
else
newGeneration.add(parent1);
if (!isTooLong(offspring2))
newGeneration.add(offspring2);
else
newGeneration.add(parent2);
}
population = newGeneration;
//archive
updateFitnessFunctionsAndValues();
//
currentIteration++;
}
/** {@inheritDoc} */
@Override
public void initializePopulation() {
notifySearchStarted();
currentIteration = 0;
// Set up initial population
generateInitialPopulation(Properties.POPULATION);
// Determine fitness
calculateFitnessAndSortPopulation();
this.notifyIteration();
}
/** {@inheritDoc} */
@Override
public void generateSolution() {
if (Properties.ENABLE_SECONDARY_OBJECTIVE_AFTER > 0
|| Properties.ENABLE_SECONDARY_OBJECTIVE_STARVATION) {
disableFirstSecondaryCriterion();
}
if (population.isEmpty())
initializePopulation();
logger.debug("Starting evolution");
int starvationCounter = 0;
double bestFitness = Double.MAX_VALUE;
double lastBestFitness = Double.MAX_VALUE;
if (getFitnessFunction().isMaximizationFunction()){
bestFitness = 0.0;
lastBestFitness = 0.0;
}
while (!isFinished()) {
logger.debug("Current population: " + getAge() + "/" + Properties.SEARCH_BUDGET);
logger.info("Best fitness: " + getBestIndividual().getFitness());
evolve();
// Determine fitness
calculateFitnessAndSortPopulation();
applyLocalSearch();
double newFitness = getBestIndividual().getFitness();
if (getFitnessFunction().isMaximizationFunction())
assert (newFitness >= bestFitness) : "best fitness was: " + bestFitness
+ ", now best fitness is " + newFitness;
else
assert (newFitness <= bestFitness) : "best fitness was: " + bestFitness
+ ", now best fitness is " + newFitness;
bestFitness = newFitness;
if (Double.compare(bestFitness, lastBestFitness) == 0) {
starvationCounter++;
} else {
logger.info("reset starvationCounter after " + starvationCounter + " iterations");
starvationCounter = 0;
lastBestFitness = bestFitness;
}
updateSecondaryCriterion(starvationCounter);
this.notifyIteration();
}
updateBestIndividualFromArchive();
notifySearchFinished();
}
}