All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.evosuite.ga.metaheuristics.mulambda.AbstractMuLambda Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
 * contributors
 *
 * This file is part of EvoSuite.
 *
 * EvoSuite is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3.0 of the License, or
 * (at your option) any later version.
 *
 * EvoSuite is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EvoSuite. If not, see .
 */
package org.evosuite.ga.metaheuristics.mulambda;

import org.evosuite.Properties;
import org.evosuite.TimeController;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.metaheuristics.GeneticAlgorithm;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 

AbstractMuLambda

* * @author José Campos */ public abstract class AbstractMuLambda extends GeneticAlgorithm { private static final long serialVersionUID = 2738004761503761376L; private static final Logger logger = LoggerFactory.getLogger(AbstractMuLambda.class); protected final int mu; protected final int lambda; public AbstractMuLambda(ChromosomeFactory factory, int mu, int lambda) { super(factory); this.mu = mu; this.lambda = lambda; } /** {@inheritDoc} */ @Override public void initializePopulation() { this.notifySearchStarted(); this.currentIteration = 0; // set up initial population this.generateRandomPopulation(this.mu); assert this.population.size() == this.mu; // update fitness values of all individuals this.calculateFitnessAndSortPopulation(); this.notifyIteration(); } /** {@inheritDoc} */ @Override public void generateSolution() { if (this.population.isEmpty()) { this.initializePopulation(); } if (Properties.ENABLE_SECONDARY_OBJECTIVE_AFTER > 0 || Properties.ENABLE_SECONDARY_OBJECTIVE_STARVATION) { this.disableFirstSecondaryCriterion(); } int starvationCounter = 0; double bestFitness = Double.MAX_VALUE; double lastBestFitness = Double.MAX_VALUE; if (getFitnessFunction().isMaximizationFunction()) { bestFitness = 0.0; lastBestFitness = 0.0; } while (!isFinished()) { logger.debug("Current population: " + getAge() + "/" + Properties.SEARCH_BUDGET); logger.info("Best fitness: " + getBestIndividual().getFitness()); this.evolve(); this.applyLocalSearch(); double newFitness = getBestIndividual().getFitness(); if (getFitnessFunction().isMaximizationFunction()) { assert (newFitness >= bestFitness) : "best fitness was: " + bestFitness + ", now best fitness is " + newFitness; } else { assert (newFitness <= bestFitness) : "best fitness was: " + bestFitness + ", now best fitness is " + newFitness; } bestFitness = newFitness; if (Double.compare(bestFitness, lastBestFitness) == 0) { starvationCounter++; } else { logger.info("reset starvationCounter after " + starvationCounter + " iterations"); starvationCounter = 0; lastBestFitness = bestFitness; } // update fitness values of all individuals this.updateFitnessFunctionsAndValues(); this.notifyIteration(); } TimeController.execute(this::updateBestIndividualFromArchive, "update from archive", 5_000); this.notifySearchFinished(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy