![JAR search and dependency download from the Maven repository](/logo.png)
org.evosuite.ga.metaheuristics.mulambda.AbstractMuLambda Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics.mulambda;
import org.evosuite.Properties;
import org.evosuite.TimeController;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.metaheuristics.GeneticAlgorithm;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* AbstractMuLambda
*
* @author José Campos
*/
public abstract class AbstractMuLambda extends GeneticAlgorithm {
private static final long serialVersionUID = 2738004761503761376L;
private static final Logger logger = LoggerFactory.getLogger(AbstractMuLambda.class);
protected final int mu;
protected final int lambda;
public AbstractMuLambda(ChromosomeFactory factory, int mu, int lambda) {
super(factory);
this.mu = mu;
this.lambda = lambda;
}
/** {@inheritDoc} */
@Override
public void initializePopulation() {
this.notifySearchStarted();
this.currentIteration = 0;
// set up initial population
this.generateRandomPopulation(this.mu);
assert this.population.size() == this.mu;
// update fitness values of all individuals
this.calculateFitnessAndSortPopulation();
this.notifyIteration();
}
/** {@inheritDoc} */
@Override
public void generateSolution() {
if (this.population.isEmpty()) {
this.initializePopulation();
}
if (Properties.ENABLE_SECONDARY_OBJECTIVE_AFTER > 0
|| Properties.ENABLE_SECONDARY_OBJECTIVE_STARVATION) {
this.disableFirstSecondaryCriterion();
}
int starvationCounter = 0;
double bestFitness = Double.MAX_VALUE;
double lastBestFitness = Double.MAX_VALUE;
if (getFitnessFunction().isMaximizationFunction()) {
bestFitness = 0.0;
lastBestFitness = 0.0;
}
while (!isFinished()) {
logger.debug("Current population: " + getAge() + "/" + Properties.SEARCH_BUDGET);
logger.info("Best fitness: " + getBestIndividual().getFitness());
this.evolve();
this.applyLocalSearch();
double newFitness = getBestIndividual().getFitness();
if (getFitnessFunction().isMaximizationFunction()) {
assert (newFitness >= bestFitness) : "best fitness was: " + bestFitness
+ ", now best fitness is " + newFitness;
} else {
assert (newFitness <= bestFitness) : "best fitness was: " + bestFitness
+ ", now best fitness is " + newFitness;
}
bestFitness = newFitness;
if (Double.compare(bestFitness, lastBestFitness) == 0) {
starvationCounter++;
} else {
logger.info("reset starvationCounter after " + starvationCounter + " iterations");
starvationCounter = 0;
lastBestFitness = bestFitness;
}
// update fitness values of all individuals
this.updateFitnessFunctionsAndValues();
this.notifyIteration();
}
TimeController.execute(this::updateBestIndividualFromArchive, "update from archive", 5_000);
this.notifySearchFinished();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy