eu.timepit.refined.numeric.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of refined_3 Show documentation
Show all versions of refined_3 Show documentation
Simple refinement types for Scala
The newest version!
package eu.timepit.refined
import eu.timepit.refined.api.{Inference, Validate}
import eu.timepit.refined.api.Inference.==>
import eu.timepit.refined.boolean.{And, Not}
import eu.timepit.refined.internal.ToInt
import eu.timepit.refined.internal.WitnessAs
import eu.timepit.refined.numeric._
/**
* Module for numeric predicates.
*
* `Int` literals, `Double` literals for fractional base types, or
* literals of the base type can be used as arguments in predicates
* that have type parameters.
*
* Example: {{{
* scala> import eu.timepit.refined.api.Refined
* | import eu.timepit.refined.numeric.{Greater, LessEqual}
*
* scala> refineV[Greater[5]](BigInt(10))
* res1: Either[String, BigInt Refined Greater[5]] = Right(10)
*
* scala> refineV[LessEqual[1.5]](1.4)
* res2: Either[String, Double Refined LessEqual[1.5]] = Right(1.4)
* }}}
*
* Note: `[[generic.Equal]]` can also be used for numeric types.
*/
object numeric extends NumericInference {
/** Predicate that checks if a numeric value is less than `N`. */
final case class Less[N](n: N)
/** Predicate that checks if a numeric value is greater than `N`. */
final case class Greater[N](n: N)
/** Predicate that checks if an integral value modulo `N` is `O`. */
final case class Modulo[N, O](n: N, o: O)
/** Predicate that checks if a floating-point number value is not NaN. */
final case class NonNaN()
/** Predicate that checks if a numeric value is less than or equal to `N`. */
type LessEqual[N] = Not[Greater[N]]
/** Predicate that checks if a numeric value is greater than or equal to `N`. */
type GreaterEqual[N] = Not[Less[N]]
/** Predicate that checks if a numeric value is positive (> 0). */
type Positive = Greater[0]
/** Predicate that checks if a numeric value is zero or negative (<= 0). */
type NonPositive = Not[Positive]
/** Predicate that checks if a numeric value is negative (< 0). */
type Negative = Less[0]
/** Predicate that checks if a numeric value is zero or positive (>= 0). */
type NonNegative = Not[Negative]
/** Predicate that checks if an integral value is evenly divisible by `N`. */
type Divisible[N] = Modulo[N, 0]
/** Predicate that checks if an integral value is not evenly divisible by `N`. */
type NonDivisible[N] = Not[Divisible[N]]
/** Predicate that checks if an integral value is evenly divisible by 2. */
type Even = Divisible[2]
/** Predicate that checks if an integral value is not evenly divisible by 2. */
type Odd = Not[Even]
object Interval {
/** Predicate that checks if a numeric value is in the interval `(L, H)`. */
type Open[L, H] = Greater[L] And Less[H]
/** Predicate that checks if a numeric value is in the interval `(L, H]`. */
type OpenClosed[L, H] = Greater[L] And LessEqual[H]
/** Predicate that checks if a numeric value is in the interval `[L, H)`. */
type ClosedOpen[L, H] = GreaterEqual[L] And Less[H]
/** Predicate that checks if a numeric value is in the interval `[L, H]`. */
type Closed[L, H] = GreaterEqual[L] And LessEqual[H]
}
object Less {
implicit def lessValidate[T, N](implicit
wn: WitnessAs[N, T],
nt: Numeric[T]
): Validate.Plain[T, Less[N]] =
Validate.fromPredicate(t => nt.lt(t, wn.snd), t => s"($t < ${wn.snd})", Less(wn.fst))
}
object Greater {
implicit def greaterValidate[T, N](implicit
wn: WitnessAs[N, T],
nt: Numeric[T]
): Validate.Plain[T, Greater[N]] =
Validate.fromPredicate(t => nt.gt(t, wn.snd), t => s"($t > ${wn.snd})", Greater(wn.fst))
}
object Modulo {
implicit def moduloValidate[T, N, O](implicit
wn: WitnessAs[N, T],
wo: WitnessAs[O, T],
it: Integral[T]
): Validate.Plain[T, Modulo[N, O]] =
Validate.fromPredicate(
t => it.rem(t, wn.snd) == wo.snd,
t => s"($t % ${wn.snd} == ${wo.snd})",
Modulo(wn.fst, wo.fst)
)
}
object NonNaN {
implicit def floatNonNaNValidate: Validate.Plain[Float, NonNaN] = fromIsNaN(_.isNaN)
implicit def doubleNonNaNValidate: Validate.Plain[Double, NonNaN] = fromIsNaN(_.isNaN)
def fromIsNaN[A](isNaN: A => Boolean): Validate.Plain[A, NonNaN] =
Validate.fromPredicate(x => !isNaN(x), x => s"($x != NaN)", NonNaN())
}
}
private[refined] trait NumericInference {
implicit def lessInference[C, A, B](implicit
wa: WitnessAs[A, C],
wb: WitnessAs[B, C],
nc: Numeric[C]
): Less[A] ==> Less[B] =
Inference(nc.lt(wa.snd, wb.snd), s"lessInference(${wa.snd}, ${wb.snd})")
implicit def lessInferenceInt[A <: Int, B <: Int](implicit
ta: ToInt[A],
tb: ToInt[B]
): Less[A] ==> Less[B] =
Inference(ta() < tb(), s"lessInferenceInt(${ta()}, ${tb()})")
implicit def greaterInference[C, A, B](implicit
wa: WitnessAs[A, C],
wb: WitnessAs[B, C],
nc: Numeric[C]
): Greater[A] ==> Greater[B] =
Inference(nc.gt(wa.snd, wb.snd), s"greaterInference(${wa.snd}, ${wb.snd})")
implicit def greaterInferenceNat[A <: Int, B <: Int](implicit
ta: ToInt[A],
tb: ToInt[B]
): Greater[A] ==> Greater[B] =
Inference(ta() > tb(), s"greaterInferenceInt(${ta()}, ${tb()})")
implicit def greaterEqualInference[A]: Greater[A] ==> GreaterEqual[A] =
Inference.alwaysValid("greaterEqualInference")
implicit def lessEqualInference[A]: Less[A] ==> LessEqual[A] =
Inference.alwaysValid("lessEqualInference")
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy