fish.payara.microprofile.metrics.impl.ExponentiallyDecayingReservoir Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of payara-micro Show documentation
Show all versions of payara-micro Show documentation
Micro Distribution of the Payara Project for IBM JDK
The newest version!
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright (c) [2018] Payara Foundation and/or its affiliates. All rights reserved.
*
* The contents of this file are subject to the terms of either the GNU
* General Public License Version 2 only ("GPL") or the Common Development
* and Distribution License("CDDL") (collectively, the "License"). You
* may not use this file except in compliance with the License. You can
* obtain a copy of the License at
* https://github.com/payara/Payara/blob/master/LICENSE.txt
* See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each
* file and include the License file at glassfish/legal/LICENSE.txt.
*
* GPL Classpath Exception:
* The Payara Foundation designates this particular file as subject to the "Classpath"
* exception as provided by the Payara Foundation in the GPL Version 2 section of the License
* file that accompanied this code.
*
* Modifications:
* If applicable, add the following below the License Header, with the fields
* enclosed by brackets [] replaced by your own identifying information:
* "Portions Copyright [year] [name of copyright owner]"
*
* Contributor(s):
* If you wish your version of this file to be governed by only the CDDL or
* only the GPL Version 2, indicate your decision by adding "[Contributor]
* elects to include this software in this distribution under the [CDDL or GPL
* Version 2] license." If you don't indicate a single choice of license, a
* recipient has the option to distribute your version of this file under
* either the CDDL, the GPL Version 2 or to extend the choice of license to
* its licensees as provided above. However, if you add GPL Version 2 code
* and therefore, elected the GPL Version 2 license, then the option applies
* only if the new code is made subject to such option by the copyright
* holder.
*
* *****************************************************************************
* Copyright 2010-2013 Coda Hale and Yammer, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package fish.payara.microprofile.metrics.impl;
import fish.payara.microprofile.metrics.impl.WeightedSnapshot.WeightedSample;
import static java.lang.Math.exp;
import static java.lang.Math.min;
import java.util.ArrayList;
import java.util.concurrent.ConcurrentSkipListMap;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import org.eclipse.microprofile.metrics.Snapshot;
/**
* An exponentially-decaying random reservoir of {@code long}s. Uses Cormode et
* al's forward-decaying priority reservoir sampling method to produce a
* statistically representative sampling reservoir, exponentially biased towards
* newer entries.
*
* @see
* Cormode et al. Forward Decay: A Practical Time Decay Model for Streaming
* Systems. ICDE '09: Proceedings of the 2009 IEEE International Conference on
* Data Engineering (2009)
*/
public class ExponentiallyDecayingReservoir implements Reservoir {
private static final int DEFAULT_SIZE = 1028;
private static final double DEFAULT_ALPHA = 0.015;
private static final long RESCALE_THRESHOLD = TimeUnit.HOURS.toNanos(1);
private final ConcurrentSkipListMap values;
private final ReentrantReadWriteLock lock;
private final double alpha;
private final int size;
private final AtomicLong count;
private volatile long startTime;
private final AtomicLong nextScaleTime;
private final Clock clock;
/**
* Creates a new {@link ExponentiallyDecayingReservoir} of 1028 elements,
* which offers a 99.9% confidence level with a 5% margin of error assuming
* a normal distribution, and an alpha factor of 0.015, which heavily biases
* the reservoir to the past 5 minutes of measurements.
*/
public ExponentiallyDecayingReservoir() {
this(DEFAULT_SIZE, DEFAULT_ALPHA);
}
/**
* Creates a new {@link ExponentiallyDecayingReservoir}.
*
* @param size the number of samples to keep in the sampling reservoir
* @param alpha the exponential decay factor; the higher this is, the more
* biased the reservoir will be towards newer values
*/
public ExponentiallyDecayingReservoir(int size, double alpha) {
this(size, alpha, Clock.defaultClock());
}
/**
* Creates a new {@link ExponentiallyDecayingReservoir}.
*
* @param size the number of samples to keep in the sampling reservoir
* @param alpha the exponential decay factor; the higher this is, the more
* biased the reservoir will be towards newer values
* @param clock the clock used to timestamp samples and track rescaling
*/
public ExponentiallyDecayingReservoir(int size, double alpha, Clock clock) {
this.values = new ConcurrentSkipListMap<>();
this.lock = new ReentrantReadWriteLock();
this.alpha = alpha;
this.size = size;
this.clock = clock;
this.count = new AtomicLong(0);
this.startTime = currentTimeInSeconds();
this.nextScaleTime = new AtomicLong(clock.getTick() + RESCALE_THRESHOLD);
}
@Override
public int size() {
return (int) min(size, count.get());
}
@Override
public void update(long value) {
update(value, currentTimeInSeconds());
}
/**
* Adds an old value with a fixed timestamp to the reservoir.
*
* @param value the value to be added
* @param timestamp the epoch timestamp of {@code value} in seconds
*/
public void update(long value, long timestamp) {
rescaleIfNeeded();
lockForRegularUsage();
try {
final double itemWeight = weight(timestamp - startTime);
final WeightedSample sample = new WeightedSample(value, itemWeight);
final double priority = itemWeight / ThreadLocalRandom.current().nextDouble();
final long newCount = count.incrementAndGet();
if (newCount <= size) {
values.put(priority, sample);
} else {
Double first = values.firstKey();
if (first < priority && values.putIfAbsent(priority, sample) == null) {
// ensure we always remove an item
while (values.remove(first) == null) {
first = values.firstKey();
}
}
}
} finally {
unlockForRegularUsage();
}
}
private void rescaleIfNeeded() {
final long now = clock.getTick();
final long next = nextScaleTime.get();
if (now >= next) {
rescale(now, next);
}
}
@Override
public Snapshot getSnapshot() {
rescaleIfNeeded();
lockForRegularUsage();
try {
return new WeightedSnapshot(values.values());
} finally {
unlockForRegularUsage();
}
}
private long currentTimeInSeconds() {
return TimeUnit.MILLISECONDS.toSeconds(clock.getTime());
}
private double weight(long t) {
return exp(alpha * t);
}
/* "A common feature of the above techniques—indeed, the key technique that
* allows us to track the decayed weights efficiently—is that they maintain
* counts and other quantities based on g(ti − L), and only scale by g(t − L)
* at query time. But while g(ti −L)/g(t−L) is guaranteed to lie between zero
* and one, the intermediate values of g(ti − L) could become very large. For
* polynomial functions, these values should not grow too large, and should be
* effectively represented in practice by floating point values without loss of
* precision. For exponential functions, these values could grow quite large as
* new values of (ti − L) become large, and potentially exceed the capacity of
* common floating point types. However, since the values stored by the
* algorithms are linear combinations of g values (scaled sums), they can be
* rescaled relative to a new landmark. That is, by the analysis of exponential
* decay in Section III-A, the choice of L does not affect the final result. We
* can therefore multiply each value based on L by a factor of exp(−α(L′ − L)),
* and obtain the correct value as if we had instead computed relative to a new
* landmark L′ (and then use this new L′ at query time). This can be done with
* a linear pass over whatever data structure is being used."
*/
private void rescale(long now, long next) {
lockForRescale();
try {
if (nextScaleTime.compareAndSet(next, now + RESCALE_THRESHOLD)) {
final long oldStartTime = startTime;
this.startTime = currentTimeInSeconds();
final double scalingFactor = exp(-alpha * (startTime - oldStartTime));
if (Double.compare(scalingFactor, 0) == 0) {
values.clear();
} else {
final ArrayList keys = new ArrayList<>(values.keySet());
for (Double key : keys) {
final WeightedSample sample = values.remove(key);
final WeightedSample newSample = new WeightedSample(sample.value, sample.weight * scalingFactor);
values.put(key * scalingFactor, newSample);
}
}
// make sure the counter is in sync with the number of stored samples.
count.set(values.size());
}
} finally {
unlockForRescale();
}
}
private void unlockForRescale() {
lock.writeLock().unlock();
}
private void lockForRescale() {
lock.writeLock().lock();
}
private void lockForRegularUsage() {
lock.readLock().lock();
}
private void unlockForRegularUsage() {
lock.readLock().unlock();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy