com.sun.gjc.spi.base.PreparedStatementWrapper Maven / Gradle / Ivy
Show all versions of payara-micro Show documentation
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright (c) 1997-2011 Oracle and/or its affiliates. All rights reserved.
*
* The contents of this file are subject to the terms of either the GNU
* General Public License Version 2 only ("GPL") or the Common Development
* and Distribution License("CDDL") (collectively, the "License"). You
* may not use this file except in compliance with the License. You can
* obtain a copy of the License at
* https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html
* or packager/legal/LICENSE.txt. See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each
* file and include the License file at packager/legal/LICENSE.txt.
*
* GPL Classpath Exception:
* Oracle designates this particular file as subject to the "Classpath"
* exception as provided by Oracle in the GPL Version 2 section of the License
* file that accompanied this code.
*
* Modifications:
* If applicable, add the following below the License Header, with the fields
* enclosed by brackets [] replaced by your own identifying information:
* "Portions Copyright [year] [name of copyright owner]"
*
* Contributor(s):
* If you wish your version of this file to be governed by only the CDDL or
* only the GPL Version 2, indicate your decision by adding "[Contributor]
* elects to include this software in this distribution under the [CDDL or GPL
* Version 2] license." If you don't indicate a single choice of license, a
* recipient has the option to distribute your version of this file under
* either the CDDL, the GPL Version 2 or to extend the choice of license to
* its licensees as provided above. However, if you add GPL Version 2 code
* and therefore, elected the GPL Version 2 license, then the option applies
* only if the new code is made subject to such option by the copyright
* holder.
*/
package com.sun.gjc.spi.base;
import com.sun.gjc.common.DataSourceObjectBuilder;
import com.sun.gjc.util.ResultSetClosedEventListener;
import java.io.InputStream;
import java.io.Reader;
import java.math.BigDecimal;
import java.net.URL;
import java.sql.*;
import java.util.Calendar;
import java.util.logging.Level;
/**
* Abstract class for wrapping PreparedStatement
*/
public abstract class PreparedStatementWrapper extends StatementWrapper implements
PreparedStatement, ResultSetClosedEventListener {
protected PreparedStatement preparedStatement = null;
private boolean busy = false;
private boolean cached = false;
private int defaultMaxFieldSize;
private int defaultMaxRows;
private int defaultQueryTimeout;
private int defaultFetchDirection;
private int defaultFetchSize;
private int currentMaxFieldSize;
private int currentMaxRows;
private int currentQueryTimeout;
private int currentFetchDirection;
private int currentFetchSize;
private boolean valid = true;
/**
* Abstract class for wrapping PreparedStatement
*
* @param con Connection Wrapper
* @param statement PreparedStatement that is to be wrapped.
* @param cachingEnabled boolean that enabled/ disables caching
* @throws SQLException Exception thrown from underlying statement
*/
public PreparedStatementWrapper(Connection con,
PreparedStatement statement, boolean cachingEnabled) throws SQLException {
super(con, statement);
preparedStatement = statement;
cached = cachingEnabled;
ConnectionHolder wrappedCon = (ConnectionHolder) con;
leakDetector = wrappedCon.getManagedConnection().getLeakDetector();
if (cached) {
defaultQueryTimeout = preparedStatement.getQueryTimeout();
defaultMaxFieldSize = preparedStatement.getMaxFieldSize();
defaultFetchSize = preparedStatement.getFetchSize();
defaultMaxRows = preparedStatement.getMaxRows();
defaultFetchDirection = preparedStatement.getFetchDirection();
currentQueryTimeout = defaultQueryTimeout;
currentMaxFieldSize = defaultMaxFieldSize;
currentFetchSize = defaultFetchSize;
currentMaxRows = defaultMaxRows;
currentFetchDirection = defaultFetchDirection;
} else {
//Start Statement leak detection
if(leakDetector != null) {
leakDetector.startStatementLeakTracing(preparedStatement, this);
}
}
}
/**
* Executes the SQL statement in this PreparedStatement
object,
* which must be an SQL INSERT
, UPDATE
or
* DELETE
statement; or an SQL statement that returns nothing,
* such as a DDL statement.
*
* @return either (1) the row count for INSERT
, UPDATE
,
* or DELETE
statements
* or (2) 0 for SQL statements that return nothing
* @throws java.sql.SQLException if a database access error occurs or the SQL
* statement returns a ResultSet
object
*/
public int executeUpdate() throws SQLException {
return preparedStatement.executeUpdate();
}
/**
* Sets the designated parameter to SQL NULL
.
*
* Note: You must specify the parameter's SQL type.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param sqlType the SQL type code defined in java.sql.Types
* @throws java.sql.SQLException if a database access error occurs
*/
public void setNull(int parameterIndex, int sqlType) throws SQLException {
preparedStatement.setNull(parameterIndex, sqlType);
}
/**
* Sets the designated parameter to the given Java boolean
value.
* The driver converts this
* to an SQL BIT
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setBoolean(int parameterIndex, boolean x) throws SQLException {
preparedStatement.setBoolean(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java byte
value.
* The driver converts this
* to an SQL TINYINT
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setByte(int parameterIndex, byte x) throws SQLException {
preparedStatement.setByte(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java short
value.
* The driver converts this
* to an SQL SMALLINT
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setShort(int parameterIndex, short x) throws SQLException {
preparedStatement.setShort(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java int
value.
* The driver converts this
* to an SQL INTEGER
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setInt(int parameterIndex, int x) throws SQLException {
preparedStatement.setInt(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java long
value.
* The driver converts this
* to an SQL BIGINT
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setLong(int parameterIndex, long x) throws SQLException {
preparedStatement.setLong(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java float
value.
* The driver converts this
* to an SQL FLOAT
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setFloat(int parameterIndex, float x) throws SQLException {
preparedStatement.setFloat(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java double
value.
* The driver converts this
* to an SQL DOUBLE
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setDouble(int parameterIndex, double x) throws SQLException {
preparedStatement.setDouble(parameterIndex, x);
}
/**
* Sets the designated parameter to the given java.math.BigDecimal
value.
* The driver converts this to an SQL NUMERIC
value when
* it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setBigDecimal(int parameterIndex, BigDecimal x) throws SQLException {
preparedStatement.setBigDecimal(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java String
value.
* The driver converts this
* to an SQL VARCHAR
or LONGVARCHAR
value
* (depending on the argument's
* size relative to the driver's limits on VARCHAR
values)
* when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setString(int parameterIndex, String x) throws SQLException {
preparedStatement.setString(parameterIndex, x);
}
/**
* Sets the designated parameter to the given Java array of bytes. The driver converts
* this to an SQL VARBINARY
or LONGVARBINARY
* (depending on the argument's size relative to the driver's limits on
* VARBINARY
values) when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setBytes(int parameterIndex, byte x[]) throws SQLException {
preparedStatement.setBytes(parameterIndex, x);
}
/**
* Sets the designated parameter to the given java.sql.Date
value.
* The driver converts this
* to an SQL DATE
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setDate(int parameterIndex, Date x) throws SQLException {
preparedStatement.setDate(parameterIndex, x);
}
/**
* Sets the designated parameter to the given java.sql.Time
value.
* The driver converts this
* to an SQL TIME
value when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setTime(int parameterIndex, Time x) throws SQLException {
preparedStatement.setTime(parameterIndex, x);
}
/**
* Sets the designated parameter to the given java.sql.Timestamp
value.
* The driver
* converts this to an SQL TIMESTAMP
value when it sends it to the
* database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @throws java.sql.SQLException if a database access error occurs
*/
public void setTimestamp(int parameterIndex, Timestamp x) throws SQLException {
preparedStatement.setTimestamp(parameterIndex, x);
}
/**
* Sets the designated parameter to the given input stream, which will have
* the specified number of bytes.
* When a very large ASCII value is input to a LONGVARCHAR
* parameter, it may be more practical to send it via a
* java.io.InputStream
. Data will be read from the stream
* as needed until end-of-file is reached. The JDBC driver will
* do any necessary conversion from ASCII to the database char format.
*
* Note: This stream object can either be a standard
* Java stream object or your own subclass that implements the
* standard interface.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the Java input stream that contains the ASCII parameter value
* @param length the number of bytes in the stream
* @throws java.sql.SQLException if a database access error occurs
*/
public void setAsciiStream(int parameterIndex, InputStream x, int length) throws SQLException {
preparedStatement.setAsciiStream(parameterIndex, x, length);
}
/**
* Sets the designated parameter to the given input stream, which
* will have the specified number of bytes. A Unicode character has
* two bytes, with the first byte being the high byte, and the second
* being the low byte.
*
* When a very large Unicode value is input to a LONGVARCHAR
* parameter, it may be more practical to send it via a
* java.io.InputStream
object. The data will be read from the
* stream as needed until end-of-file is reached. The JDBC driver will
* do any necessary conversion from Unicode to the database char format.
*
* Note: This stream object can either be a standard
* Java stream object or your own subclass that implements the
* standard interface.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x a java.io.InputStream
object that contains the
* Unicode parameter value as two-byte Unicode characters
* @param length the number of bytes in the stream
* @throws java.sql.SQLException if a database access error occurs
* @deprecated
*/
@Deprecated
public void setUnicodeStream(int parameterIndex, InputStream x, int length) throws SQLException {
preparedStatement.setUnicodeStream(parameterIndex, x, length);
}
/**
* Sets the designated parameter to the given input stream, which will have
* the specified number of bytes.
* When a very large binary value is input to a LONGVARBINARY
* parameter, it may be more practical to send it via a
* java.io.InputStream
object. The data will be read from the
* stream as needed until end-of-file is reached.
*
* Note: This stream object can either be a standard
* Java stream object or your own subclass that implements the
* standard interface.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the java input stream which contains the binary parameter value
* @param length the number of bytes in the stream
* @throws java.sql.SQLException if a database access error occurs
*/
public void setBinaryStream(int parameterIndex, InputStream x, int length) throws SQLException {
preparedStatement.setBinaryStream(parameterIndex, x, length);
}
/**
* Clears the current parameter values immediately.
*
In general, parameter values remain in force for repeated use of a
* statement. Setting a parameter value automatically clears its
* previous value. However, in some cases it is useful to immediately
* release the resources used by the current parameter values; this can
* be done by calling the method clearParameters
.
*
* @throws java.sql.SQLException if a database access error occurs
*/
public void clearParameters() throws SQLException {
preparedStatement.clearParameters();
}
/**
*
Sets the value of the designated parameter with the given object. The second
* argument must be an object type; for integral values, the
* java.lang
equivalent objects should be used.
*
* The given Java object will be converted to the given targetSqlType
* before being sent to the database.
*
* If the object has a custom mapping (is of a class implementing the
* interface SQLData
),
* the JDBC driver should call the method SQLData.writeSQL
to
* write it to the SQL data stream.
* If, on the other hand, the object is of a class implementing
* Ref
, Blob
, Clob
, Struct
,
* or Array
, the driver should pass it to the database as a
* value of the corresponding SQL type.
*
* Note that this method may be used to pass database-specific
* abstract data types.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the object containing the input parameter value
* @param targetSqlType the SQL type (as defined in java.sql.Types) to be
* sent to the database. The scale argument may further qualify this type.
* @param scale for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types,
* this is the number of digits after the decimal point. For all other
* types, this value will be ignored.
* @throws java.sql.SQLException if a database access error occurs
* @see java.sql.Types
*/
public void setObject(int parameterIndex, Object x, int targetSqlType, int scale) throws SQLException {
preparedStatement.setObject(parameterIndex, x, targetSqlType, scale);
}
/**
* Sets the value of the designated parameter with the given object.
* This method is like the method setObject
* above, except that it assumes a scale of zero.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the object containing the input parameter value
* @param targetSqlType the SQL type (as defined in java.sql.Types) to be
* sent to the database
* @throws java.sql.SQLException if a database access error occurs
*/
public void setObject(int parameterIndex, Object x, int targetSqlType) throws SQLException {
preparedStatement.setObject(parameterIndex, x, targetSqlType);
}
/**
*
Sets the value of the designated parameter using the given object.
* The second parameter must be of type Object
; therefore, the
* java.lang
equivalent objects should be used for built-in types.
*
* The JDBC specification specifies a standard mapping from
* Java Object
types to SQL types. The given argument
* will be converted to the corresponding SQL type before being
* sent to the database.
*
* Note that this method may be used to pass datatabase-
* specific abstract data types, by using a driver-specific Java
* type.
*
* If the object is of a class implementing the interface SQLData
,
* the JDBC driver should call the method SQLData.writeSQL
* to write it to the SQL data stream.
* If, on the other hand, the object is of a class implementing
* Ref
, Blob
, Clob
, Struct
,
* or Array
, the driver should pass it to the database as a
* value of the corresponding SQL type.
*
* This method throws an exception if there is an ambiguity, for example, if the
* object is of a class implementing more than one of the interfaces named above.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the object containing the input parameter value
* @throws java.sql.SQLException if a database access error occurs or the type
* of the given object is ambiguous
*/
public void setObject(int parameterIndex, Object x) throws SQLException {
preparedStatement.setObject(parameterIndex, x);
}
/**
* Executes the SQL statement in this PreparedStatement
object,
* which may be any kind of SQL statement.
* Some prepared statements return multiple results; the execute
* method handles these complex statements as well as the simpler
* form of statements handled by the methods executeQuery
* and executeUpdate
.
*
* The execute
method returns a boolean
to
* indicate the form of the first result. You must call either the method
* getResultSet
or getUpdateCount
* to retrieve the result; you must call getMoreResults
to
* move to any subsequent result(s).
*
* @return true
if the first result is a ResultSet
* object; false
if the first result is an update
* count or there is no result
* @throws java.sql.SQLException if a database access error occurs or an argument
* is supplied to this method
* @see java.sql.Statement#execute
* @see java.sql.Statement#getResultSet
* @see java.sql.Statement#getUpdateCount
* @see java.sql.Statement#getMoreResults
*/
public boolean execute() throws SQLException {
return preparedStatement.execute();
}
/**
* Adds a set of parameters to this PreparedStatement
* object's batch of commands.
*
* @throws java.sql.SQLException if a database access error occurs
* @see java.sql.Statement#addBatch
* @since 1.2
*/
public void addBatch() throws SQLException {
preparedStatement.addBatch();
}
/**
* Sets the designated parameter to the given Reader
* object, which is the given number of characters long.
* When a very large UNICODE value is input to a LONGVARCHAR
* parameter, it may be more practical to send it via a
* java.io.Reader
object. The data will be read from the stream
* as needed until end-of-file is reached. The JDBC driver will
* do any necessary conversion from UNICODE to the database char format.
*
* Note: This stream object can either be a standard
* Java stream object or your own subclass that implements the
* standard interface.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param reader the java.io.Reader
object that contains the
* Unicode data
* @param length the number of characters in the stream
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setCharacterStream(int parameterIndex, Reader reader, int length) throws SQLException {
preparedStatement.setCharacterStream(parameterIndex, reader, length);
}
/**
* Sets the designated parameter to the given
* REF(<structured-type>)
value.
* The driver converts this to an SQL REF
value when it
* sends it to the database.
*
* @param i the first parameter is 1, the second is 2, ...
* @param x an SQL REF
value
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setRef(int i, Ref x) throws SQLException {
preparedStatement.setRef(i, x);
}
/**
* Sets the designated parameter to the given Blob
object.
* The driver converts this to an SQL BLOB
value when it
* sends it to the database.
*
* @param i the first parameter is 1, the second is 2, ...
* @param x a Blob
object that maps an SQL BLOB
value
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setBlob(int i, Blob x) throws SQLException {
preparedStatement.setBlob(i, x);
}
/**
* Sets the designated parameter to the given Clob
object.
* The driver converts this to an SQL CLOB
value when it
* sends it to the database.
*
* @param i the first parameter is 1, the second is 2, ...
* @param x a Clob
object that maps an SQL CLOB
value
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setClob(int i, Clob x) throws SQLException {
preparedStatement.setClob(i, x);
}
/**
* Sets the designated parameter to the given Array
object.
* The driver converts this to an SQL ARRAY
value when it
* sends it to the database.
*
* @param i the first parameter is 1, the second is 2, ...
* @param x an Array
object that maps an SQL ARRAY
value
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setArray(int i, Array x) throws SQLException {
preparedStatement.setArray(i, x);
}
/**
* Retrieves a ResultSetMetaData
object that contains
* information about the columns of the ResultSet
object
* that will be returned when this PreparedStatement
object
* is executed.
*
* Because a PreparedStatement
object is precompiled, it is
* possible to know about the ResultSet
object that it will
* return without having to execute it. Consequently, it is possible
* to invoke the method getMetaData
on a
* PreparedStatement
object rather than waiting to execute
* it and then invoking the ResultSet.getMetaData
method
* on the ResultSet
object that is returned.
*
* NOTE: Using this method may be expensive for some drivers due
* to the lack of underlying DBMS support.
*
* @return the description of a ResultSet
object's columns or
* null
if the driver cannot return a
* ResultSetMetaData
object
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public ResultSetMetaData getMetaData() throws SQLException {
return preparedStatement.getMetaData();
}
/**
* Sets the designated parameter to the given java.sql.Date
value,
* using the given Calendar
object. The driver uses
* the Calendar
object to construct an SQL DATE
value,
* which the driver then sends to the database. With
* a Calendar
object, the driver can calculate the date
* taking into account a custom timezone. If no
* Calendar
object is specified, the driver uses the default
* timezone, which is that of the virtual machine running the application.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @param cal the Calendar
object the driver will use
* to construct the date
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setDate(int parameterIndex, Date x, Calendar cal) throws SQLException {
preparedStatement.setDate(parameterIndex, x, cal);
}
/**
* Sets the designated parameter to the given java.sql.Time
value,
* using the given Calendar
object. The driver uses
* the Calendar
object to construct an SQL TIME
value,
* which the driver then sends to the database. With
* a Calendar
object, the driver can calculate the time
* taking into account a custom timezone. If no
* Calendar
object is specified, the driver uses the default
* timezone, which is that of the virtual machine running the application.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @param cal the Calendar
object the driver will use
* to construct the time
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setTime(int parameterIndex, Time x, Calendar cal) throws SQLException {
preparedStatement.setTime(parameterIndex, x, cal);
}
/**
* Sets the designated parameter to the given java.sql.Timestamp
value,
* using the given Calendar
object. The driver uses
* the Calendar
object to construct an SQL TIMESTAMP
value,
* which the driver then sends to the database. With a
* Calendar
object, the driver can calculate the timestamp
* taking into account a custom timezone. If no
* Calendar
object is specified, the driver uses the default
* timezone, which is that of the virtual machine running the application.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the parameter value
* @param cal the Calendar
object the driver will use
* to construct the timestamp
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setTimestamp(int parameterIndex, Timestamp x, Calendar cal) throws SQLException {
preparedStatement.setTimestamp(parameterIndex, x, cal);
}
/**
* Sets the designated parameter to SQL NULL
.
* This version of the method setNull
should
* be used for user-defined types and REF type parameters. Examples
* of user-defined types include: STRUCT, DISTINCT, JAVA_OBJECT, and
* named array types.
*
* Note: To be portable, applications must give the
* SQL type code and the fully-qualified SQL type name when specifying
* a NULL user-defined or REF parameter. In the case of a user-defined type
* the name is the type name of the parameter itself. For a REF
* parameter, the name is the type name of the referenced type. If
* a JDBC driver does not need the type code or type name information,
* it may ignore it.
*
* Although it is intended for user-defined and Ref parameters,
* this method may be used to set a null parameter of any JDBC type.
* If the parameter does not have a user-defined or REF type, the given
* typeName is ignored.
*
* @param paramIndex the first parameter is 1, the second is 2, ...
* @param sqlType a value from java.sql.Types
* @param typeName the fully-qualified name of an SQL user-defined type;
* ignored if the parameter is not a user-defined type or REF
* @throws java.sql.SQLException if a database access error occurs
* @since 1.2
*/
public void setNull(int paramIndex, int sqlType, String typeName) throws SQLException {
preparedStatement.setNull(paramIndex, sqlType, typeName);
}
/**
* Sets the designated parameter to the given java.net.URL
value.
* The driver converts this to an SQL DATALINK
value
* when it sends it to the database.
*
* @param parameterIndex the first parameter is 1, the second is 2, ...
* @param x the java.net.URL
object to be set
* @throws java.sql.SQLException if a database access error occurs
* @since 1.4
*/
public void setURL(int parameterIndex, URL x) throws SQLException {
preparedStatement.setURL(parameterIndex, x);
}
/**
* Retrieves the number, types and properties of this
* PreparedStatement
object's parameters.
*
* @return a ParameterMetaData
object that contains information
* about the number, types and properties of this
* PreparedStatement
object's parameters
* @throws java.sql.SQLException if a database access error occurs
* @see java.sql.ParameterMetaData
* @since 1.4
*/
public ParameterMetaData getParameterMetaData() throws SQLException {
return preparedStatement.getParameterMetaData();
}
public boolean isBusy() {
return busy;
}
public void setBusy(boolean busy) {
this.busy = busy;
if (busy) {
if (leakDetector != null) {
leakDetector.startStatementLeakTracing(preparedStatement, this);
}
} else {
if (leakDetector != null) {
leakDetector.stopStatementLeakTracing(preparedStatement, this);
if(cached && isMarkedForReclaim()) {
//When caching is on and is marked for reclaim, the statement
//would still remain in cache. Hence mark it as invalid and
//let the client that uses the statement, detect and purge
//it if found as invalid
setValid(false);
}
}
}
}
public boolean getCached() {
return cached;
}
public void close() throws SQLException {
if (!cached) {
//Stop leak tracing
if(leakDetector != null) {
leakDetector.stopStatementLeakTracing(preparedStatement, this);
}
preparedStatement.close();
} else {
//TODO-SC what if Exception is thrown in this block, should there be a way to indicate the
// con. not to use this statement any more ?
clearParameters();
if (defaultQueryTimeout != currentQueryTimeout) {
preparedStatement.setQueryTimeout(defaultQueryTimeout);
currentQueryTimeout = defaultQueryTimeout;
}
if (defaultMaxFieldSize != currentMaxFieldSize) {
preparedStatement.setMaxFieldSize(defaultMaxFieldSize);
currentMaxFieldSize = defaultMaxFieldSize;
}
if (defaultFetchSize != currentFetchSize) {
preparedStatement.setFetchSize(defaultFetchSize);
currentFetchSize = defaultFetchSize;
}
if (defaultMaxRows != currentMaxRows) {
preparedStatement.setMaxRows(defaultMaxRows);
currentMaxRows = defaultMaxRows;
}
if (defaultFetchDirection != currentFetchDirection) {
preparedStatement.setFetchDirection(defaultFetchDirection);
currentFetchDirection = defaultFetchDirection;
}
setBusy(false);
}
}
public void closeOnCompletion() throws SQLException {
if (DataSourceObjectBuilder.isJDBC41()) {
if(!cached) {
//If statement caching is not turned on, call the driver implementation directly
if (leakDetector != null) {
_logger.log(Level.INFO, "jdbc.invalid_operation.close_on_completion");
throw new UnsupportedOperationException("Not supported yet.");
}
actualCloseOnCompletion();
} else {
super.closeOnCompletion();
}
}
}
public boolean isCloseOnCompletion() throws SQLException {
if (DataSourceObjectBuilder.isJDBC41()) {
if(cached) {
return getCloseOnCompletion();
}
}
return super.isCloseOnCompletion();
}
public void setMaxFieldSize(int max) throws SQLException {
preparedStatement.setMaxFieldSize(max);
if (cached)
currentMaxFieldSize = max;
}
public void setMaxRows(int max) throws SQLException {
preparedStatement.setMaxRows(max);
if (cached)
currentMaxRows = max;
}
public void setQueryTimeout(int seconds) throws SQLException {
preparedStatement.setQueryTimeout(seconds);
if (cached)
currentQueryTimeout = seconds;
}
public void setFetchDirection(int direction) throws SQLException {
preparedStatement.setFetchDirection(direction);
if (cached)
currentFetchDirection = direction;
}
public void setFetchSize(int rows) throws SQLException {
preparedStatement.setFetchSize(rows);
if (cached)
currentFetchSize = rows;
}
public void setCached(boolean cached){
this.cached = cached;
}
public boolean isValid() {
return valid;
}
public void setValid(boolean valid) {
this.valid = valid;
}
public void incrementResultSetReferenceCount() {
//Update resultSetCount to be used in case of jdbc41 closeOnCompletion
if (DataSourceObjectBuilder.isJDBC41() && getCached()) {
incrementResultSetCount();
}
}
public void resultSetClosed() throws SQLException {
if (DataSourceObjectBuilder.isJDBC41() && getCached()) {
decrementResultSetCount();
if (getCloseOnCompletion() && getResultSetCount() == 0) {
ConnectionHolder wrappedCon = (ConnectionHolder) getConnection();
wrappedCon.getManagedConnection().purgeStatementFromCache(this);
}
}
}
}