Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package fr.acinq.lightning.channel
import fr.acinq.bitcoin.*
import fr.acinq.bitcoin.Crypto.ripemd160
import fr.acinq.bitcoin.Crypto.sha256
import fr.acinq.bitcoin.Script.pay2wsh
import fr.acinq.bitcoin.Script.write
import fr.acinq.bitcoin.utils.Either
import fr.acinq.bitcoin.utils.Try
import fr.acinq.bitcoin.utils.runTrying
import fr.acinq.lightning.Feature
import fr.acinq.lightning.Features
import fr.acinq.lightning.MilliSatoshi
import fr.acinq.lightning.NodeParams
import fr.acinq.lightning.blockchain.BITCOIN_OUTPUT_SPENT
import fr.acinq.lightning.blockchain.BITCOIN_TX_CONFIRMED
import fr.acinq.lightning.blockchain.WatchConfirmed
import fr.acinq.lightning.blockchain.WatchSpent
import fr.acinq.lightning.blockchain.fee.FeeratePerKw
import fr.acinq.lightning.blockchain.fee.FeerateTolerance
import fr.acinq.lightning.blockchain.fee.OnChainFeerates
import fr.acinq.lightning.channel.Helpers.Closing.inputsAlreadySpent
import fr.acinq.lightning.channel.states.Channel
import fr.acinq.lightning.channel.states.ClosingFeerates
import fr.acinq.lightning.channel.states.ClosingFees
import fr.acinq.lightning.crypto.Bolt3Derivation.deriveForCommitment
import fr.acinq.lightning.crypto.Bolt3Derivation.deriveForRevocation
import fr.acinq.lightning.crypto.KeyManager
import fr.acinq.lightning.crypto.ShaChain
import fr.acinq.lightning.logging.*
import fr.acinq.lightning.transactions.*
import fr.acinq.lightning.transactions.Scripts.multiSig2of2
import fr.acinq.lightning.transactions.Transactions.TransactionWithInputInfo.ClaimHtlcDelayedOutputPenaltyTx
import fr.acinq.lightning.transactions.Transactions.TransactionWithInputInfo.ClaimHtlcTx.ClaimHtlcTimeoutTx
import fr.acinq.lightning.transactions.Transactions.TransactionWithInputInfo.ClosingTx
import fr.acinq.lightning.transactions.Transactions.TransactionWithInputInfo.HtlcTx.HtlcSuccessTx
import fr.acinq.lightning.transactions.Transactions.TransactionWithInputInfo.HtlcTx.HtlcTimeoutTx
import fr.acinq.lightning.transactions.Transactions.commitTxFee
import fr.acinq.lightning.transactions.Transactions.makeCommitTxOutputs
import fr.acinq.lightning.utils.*
import fr.acinq.lightning.wire.*
import kotlin.math.max
object Helpers {
/**
* Returns the number of confirmations needed to safely handle the funding transaction,
* we make sure the cumulative block reward largely exceeds the channel size.
*
* @param fundingAmount funding amount of the channel
* @return number of confirmations needed
*/
fun minDepthForFunding(nodeParams: NodeParams, fundingAmount: Satoshi): Int {
val blockReward = 6.25f // this is true as of ~May 2020, but will be too large after 2024
val scalingFactor = 15
val btc = fundingAmount.toLong().toDouble() / 100_000_000L
val blocksToReachFunding: Int = (((scalingFactor * btc) / blockReward) + 1).toInt()
return max(nodeParams.minDepthBlocks, blocksToReachFunding)
}
/** Called by the non-initiator. */
fun validateParamsNonInitiator(nodeParams: NodeParams, open: OpenDualFundedChannel): Either {
// NB: we only accept channels from peers who support explicit channel type negotiation.
val channelType = open.channelType ?: return Either.Left(MissingChannelType(open.temporaryChannelId))
if (channelType is ChannelType.UnsupportedChannelType) {
return Either.Left(InvalidChannelType(open.temporaryChannelId, ChannelType.SupportedChannelType.AnchorOutputsZeroReserve, channelType))
}
// BOLT #2: if the chain_hash value, within the open_channel, message is set to a hash of a chain that is unknown to the receiver:
// MUST reject the channel.
if (nodeParams.chainHash != open.chainHash) {
return Either.Left(InvalidChainHash(open.temporaryChannelId, local = nodeParams.chainHash, remote = open.chainHash))
}
// BOLT #2: The receiving node MUST fail the channel if: push_msat is greater than funding_satoshis * 1000.
if (open.pushAmount > open.fundingAmount) {
return Either.Left(InvalidPushAmount(open.temporaryChannelId, open.pushAmount, open.fundingAmount.toMilliSatoshi()))
}
// BOLT #2: The receiving node MUST fail the channel if: to_self_delay is unreasonably large.
if (open.toSelfDelay > Channel.MAX_TO_SELF_DELAY || open.toSelfDelay > nodeParams.maxToLocalDelayBlocks) {
return Either.Left(ToSelfDelayTooHigh(open.temporaryChannelId, open.toSelfDelay, nodeParams.maxToLocalDelayBlocks))
}
// BOLT #2: The receiving node MUST fail the channel if: max_accepted_htlcs is greater than 483.
if (open.maxAcceptedHtlcs > Channel.MAX_ACCEPTED_HTLCS) {
return Either.Left(InvalidMaxAcceptedHtlcs(open.temporaryChannelId, open.maxAcceptedHtlcs, Channel.MAX_ACCEPTED_HTLCS))
}
// BOLT #2: The receiving node MUST fail the channel if: it considers feerate_per_kw too small for timely processing.
if (isFeeTooSmall(open.commitmentFeerate)) {
return Either.Left(FeerateTooSmall(open.temporaryChannelId, open.commitmentFeerate))
}
if (open.dustLimit > nodeParams.maxRemoteDustLimit) {
return Either.Left(DustLimitTooLarge(open.temporaryChannelId, open.dustLimit, nodeParams.maxRemoteDustLimit))
}
if (open.dustLimit < Channel.MIN_DUST_LIMIT) {
return Either.Left(DustLimitTooSmall(open.temporaryChannelId, open.dustLimit, Channel.MIN_DUST_LIMIT))
}
if (isFeeDiffTooHigh(FeeratePerKw.CommitmentFeerate, open.commitmentFeerate, nodeParams.onChainFeeConf.feerateTolerance)) {
return Either.Left(FeerateTooDifferent(open.temporaryChannelId, FeeratePerKw.CommitmentFeerate, open.commitmentFeerate))
}
return Either.Right(channelType)
}
/** Called by the initiator. */
fun validateParamsInitiator(nodeParams: NodeParams, init: ChannelCommand.Init.Initiator, open: OpenDualFundedChannel, accept: AcceptDualFundedChannel): Either {
require(open.channelType != null) { "we should have sent a channel type in open_channel" }
if (accept.channelType == null) {
// We only open channels to peers who support explicit channel type negotiation.
return Either.Left(MissingChannelType(accept.temporaryChannelId))
}
if (open.channelType != accept.channelType) {
return Either.Left(InvalidChannelType(accept.temporaryChannelId, open.channelType!!, accept.channelType!!))
}
if (accept.fundingAmount < 0.sat) {
return Either.Left(InvalidFundingAmount(accept.temporaryChannelId, accept.fundingAmount))
}
if (accept.pushAmount > accept.fundingAmount) {
return Either.Left(InvalidPushAmount(accept.temporaryChannelId, accept.pushAmount, accept.fundingAmount.toMilliSatoshi()))
}
if (accept.maxAcceptedHtlcs > Channel.MAX_ACCEPTED_HTLCS) {
return Either.Left(InvalidMaxAcceptedHtlcs(accept.temporaryChannelId, accept.maxAcceptedHtlcs, Channel.MAX_ACCEPTED_HTLCS))
}
if (accept.dustLimit < Channel.MIN_DUST_LIMIT) {
return Either.Left(DustLimitTooSmall(accept.temporaryChannelId, accept.dustLimit, Channel.MIN_DUST_LIMIT))
}
if (accept.dustLimit > nodeParams.maxRemoteDustLimit) {
return Either.Left(DustLimitTooLarge(accept.temporaryChannelId, accept.dustLimit, nodeParams.maxRemoteDustLimit))
}
// if minimum_depth is unreasonably large: MAY reject the channel.
if (accept.toSelfDelay > Channel.MAX_TO_SELF_DELAY || accept.toSelfDelay > nodeParams.maxToLocalDelayBlocks) {
return Either.Left(ToSelfDelayTooHigh(accept.temporaryChannelId, accept.toSelfDelay, nodeParams.maxToLocalDelayBlocks))
}
return Either.Right(init.channelType)
}
/**
* @param remoteFeerate remote fee rate per kiloweight
* @return true if the remote fee rate is too small
*/
private fun isFeeTooSmall(remoteFeerate: FeeratePerKw): Boolean = remoteFeerate < FeeratePerKw.MinimumFeeratePerKw
/**
* @param referenceFee reference fee rate per kiloweight
* @param currentFee current fee rate per kiloweight
* @param tolerance maximum fee rate mismatch tolerated
* @return true if the difference between proposed and reference fee rates is too high.
*/
fun isFeeDiffTooHigh(referenceFee: FeeratePerKw, currentFee: FeeratePerKw, tolerance: FeerateTolerance): Boolean =
currentFee < referenceFee * tolerance.ratioLow || referenceFee * tolerance.ratioHigh < currentFee
/**
* This indicates whether our side of the channel is above the reserve requested by our counterparty. In other words,
* this tells if we can use the channel to make a payment.
*/
fun aboveReserve(commitments: Commitments): Boolean = commitments.active.all {
val remoteCommit = it.nextRemoteCommit?.commit ?: it.remoteCommit
val toRemote = remoteCommit.spec.toRemote.truncateToSatoshi()
// NB: this is an approximation (we don't take network fees into account)
toRemote > it.localChannelReserve(commitments.params)
}
/** This helper method will publish txs only if they haven't yet reached minDepth. */
fun LoggingContext.publishIfNeeded(txs: List, irrevocablySpent: Map): List {
val (skip, process) = txs.partition { it.tx.inputsAlreadySpent(irrevocablySpent) }
skip.forEach { tx -> logger.info { "no need to republish txid=${tx.tx.txid}, it has already been confirmed" } }
return process.map { publish ->
logger.info(mapOf("txType" to publish.txType)) { "publishing txid=${publish.tx.txid}" }
publish
}
}
/** This helper method will watch txs only if they haven't yet reached minDepth. */
fun LoggingContext.watchConfirmedIfNeeded(txs: List, irrevocablySpent: Map, channelId: ByteVector32, minDepth: Long): List {
val (skip, process) = txs.partition { it.inputsAlreadySpent(irrevocablySpent) }
skip.forEach { tx -> logger.info { "no need to watch txid=${tx.txid}, it has already been confirmed" } }
return process.map { tx -> ChannelAction.Blockchain.SendWatch(WatchConfirmed(channelId, tx, minDepth, BITCOIN_TX_CONFIRMED(tx))) }
}
/** This helper method will watch txs only if the utxo they spend hasn't already been irrevocably spent. */
fun LoggingContext.watchSpentIfNeeded(parentTx: Transaction, outputs: List, irrevocablySpent: Map, channelId: ByteVector32): List {
val (skip, process) = outputs.partition { irrevocablySpent.contains(it) }
skip.forEach { output -> logger.info { "no need to watch output=${output.txid}:${output.index}, it has already been spent by txid=${irrevocablySpent[output]?.txid}" } }
return process.map { output ->
require(output.txid == parentTx.txid) { "output doesn't belong to the given parentTx: txid=${output.txid} but expected txid=${parentTx.txid}" }
ChannelAction.Blockchain.SendWatch(WatchSpent(channelId, parentTx, output.index.toInt(), BITCOIN_OUTPUT_SPENT))
}
}
object Funding {
/** Compute the channelId of a dual-funded channel. */
fun computeChannelId(open: OpenDualFundedChannel, accept: AcceptDualFundedChannel): ByteVector32 {
return if (LexicographicalOrdering.isLessThan(open.revocationBasepoint.value, accept.revocationBasepoint.value)) {
(open.revocationBasepoint.value + accept.revocationBasepoint.value).sha256()
} else {
(accept.revocationBasepoint.value + open.revocationBasepoint.value).sha256()
}
}
fun makeFundingPubKeyScript(localFundingPubkey: PublicKey, remoteFundingPubkey: PublicKey): ByteVector {
return write(pay2wsh(multiSig2of2(localFundingPubkey, remoteFundingPubkey))).toByteVector()
}
fun makeFundingInputInfo(
fundingTxId: TxId,
fundingTxOutputIndex: Int,
fundingAmount: Satoshi,
fundingPubkey1: PublicKey,
fundingPubkey2: PublicKey
): Transactions.InputInfo {
val fundingScript = multiSig2of2(fundingPubkey1, fundingPubkey2)
val fundingTxOut = TxOut(fundingAmount, pay2wsh(fundingScript))
return Transactions.InputInfo(
OutPoint(fundingTxId, fundingTxOutputIndex.toLong()),
fundingTxOut,
ByteVector(write(fundingScript))
)
}
data class PairOfCommitTxs(val localSpec: CommitmentSpec, val localCommitTx: Transactions.TransactionWithInputInfo.CommitTx, val localHtlcTxs: List, val remoteSpec: CommitmentSpec, val remoteCommitTx: Transactions.TransactionWithInputInfo.CommitTx, val remoteHtlcTxs: List)
/**
* Creates both sides' first commitment transaction.
*
* @return (localSpec, localTx, remoteSpec, remoteTx, fundingTxOutput)
*/
fun makeCommitTxs(
channelKeys: KeyManager.ChannelKeys,
channelId: ByteVector32,
localParams: LocalParams,
remoteParams: RemoteParams,
fundingAmount: Satoshi,
toLocal: MilliSatoshi,
toRemote: MilliSatoshi,
localHtlcs: Set,
localCommitmentIndex: Long,
remoteCommitmentIndex: Long,
commitTxFeerate: FeeratePerKw,
fundingTxIndex: Long,
fundingTxId: TxId,
fundingTxOutputIndex: Int,
remoteFundingPubkey: PublicKey,
remotePerCommitmentPoint: PublicKey
): Either {
val localSpec = CommitmentSpec(localHtlcs, commitTxFeerate, toLocal = toLocal, toRemote = toRemote)
val remoteSpec = CommitmentSpec(localHtlcs.map{ it.opposite() }.toSet(), commitTxFeerate, toLocal = toRemote, toRemote = toLocal)
if (!localParams.paysCommitTxFees) {
// They are responsible for paying the commitment transaction fee: we need to make sure they can afford it!
// Note that the reserve may not be always be met: we could be using dual funding with a large funding amount on
// our side and a small funding amount on their side. But we shouldn't care as long as they can pay the fees for
// the commitment transaction.
val fees = commitTxFee(remoteParams.dustLimit, remoteSpec)
val missing = fees - remoteSpec.toLocal.truncateToSatoshi()
if (missing > 0.sat) {
return Either.Left(CannotAffordFirstCommitFees(channelId, missing = missing, fees = fees))
}
}
val fundingPubKey = channelKeys.fundingPubKey(fundingTxIndex)
val commitmentInput = makeFundingInputInfo(fundingTxId, fundingTxOutputIndex, fundingAmount, fundingPubKey, remoteFundingPubkey)
val localPerCommitmentPoint = channelKeys.commitmentPoint(localCommitmentIndex)
val (localCommitTx, localHtlcTxs) = Commitments.makeLocalTxs(
channelKeys,
commitTxNumber = localCommitmentIndex,
localParams,
remoteParams,
fundingTxIndex = fundingTxIndex,
remoteFundingPubKey = remoteFundingPubkey,
commitmentInput,
localPerCommitmentPoint = localPerCommitmentPoint,
localSpec
)
val (remoteCommitTx, remoteHtlcTxs) = Commitments.makeRemoteTxs(
channelKeys,
commitTxNumber = remoteCommitmentIndex,
localParams,
remoteParams,
fundingTxIndex = fundingTxIndex,
remoteFundingPubKey = remoteFundingPubkey,
commitmentInput,
remotePerCommitmentPoint = remotePerCommitmentPoint,
remoteSpec
)
return Either.Right(PairOfCommitTxs(localSpec, localCommitTx, localHtlcTxs, remoteSpec, remoteCommitTx, remoteHtlcTxs))
}
}
object Closing {
// used only to compute tx weights and estimate fees
private val dummyPublicKey by lazy { PrivateKey(ByteArray(32) { 1.toByte() }).publicKey() }
private fun isValidFinalScriptPubkey(scriptPubKey: ByteArray, allowAnySegwit: Boolean): Boolean {
return runTrying {
val script = Script.parse(scriptPubKey)
when {
Script.isPay2pkh(script) -> true
Script.isPay2sh(script) -> true
Script.isPay2wpkh(script) -> true
Script.isPay2wsh(script) -> true
// option_shutdown_anysegwit doesn't cover segwit v0
Script.isNativeWitnessScript(script) && script[0] != OP_0 -> allowAnySegwit
else -> false
}
}.getOrElse { false }
}
fun isValidFinalScriptPubkey(scriptPubKey: ByteVector, allowAnySegwit: Boolean): Boolean = isValidFinalScriptPubkey(scriptPubKey.toByteArray(), allowAnySegwit)
private fun firstClosingFee(commitment: FullCommitment, localScriptPubkey: ByteArray, remoteScriptPubkey: ByteArray, requestedFeerate: ClosingFeerates): ClosingFees {
// this is just to estimate the weight which depends on the size of the pubkey scripts
val dummyClosingTx = Transactions.makeClosingTx(commitment.commitInput, localScriptPubkey, remoteScriptPubkey, commitment.params.localParams.paysClosingFees, 0.sat, 0.sat, commitment.localCommit.spec)
val closingWeight = Transaction.weight(Transactions.addSigs(dummyClosingTx, dummyPublicKey, commitment.remoteFundingPubkey, Transactions.PlaceHolderSig, Transactions.PlaceHolderSig).tx)
return requestedFeerate.computeFees(closingWeight)
}
fun firstClosingFee(commitment: FullCommitment, localScriptPubkey: ByteVector, remoteScriptPubkey: ByteVector, requestedFeerate: ClosingFeerates): ClosingFees =
firstClosingFee(commitment, localScriptPubkey.toByteArray(), remoteScriptPubkey.toByteArray(), requestedFeerate)
fun nextClosingFee(localClosingFee: Satoshi, remoteClosingFee: Satoshi): Satoshi = ((localClosingFee + remoteClosingFee) / 4) * 2
fun makeFirstClosingTx(
channelKeys: KeyManager.ChannelKeys,
commitment: FullCommitment,
localScriptPubkey: ByteArray,
remoteScriptPubkey: ByteArray,
requestedFeerate: ClosingFeerates
): Pair {
val closingFees = firstClosingFee(commitment, localScriptPubkey, remoteScriptPubkey, requestedFeerate)
return makeClosingTx(channelKeys, commitment, localScriptPubkey, remoteScriptPubkey, closingFees)
}
fun makeClosingTx(
channelKeys: KeyManager.ChannelKeys,
commitment: FullCommitment,
localScriptPubkey: ByteArray,
remoteScriptPubkey: ByteArray,
closingFees: ClosingFees
): Pair {
val allowAnySegwit = Features.canUseFeature(commitment.params.localParams.features, commitment.params.remoteParams.features, Feature.ShutdownAnySegwit)
require(isValidFinalScriptPubkey(localScriptPubkey, allowAnySegwit)) { "invalid localScriptPubkey" }
require(isValidFinalScriptPubkey(remoteScriptPubkey, allowAnySegwit)) { "invalid remoteScriptPubkey" }
val dustLimit = commitment.params.localParams.dustLimit.max(commitment.params.remoteParams.dustLimit)
val closingTx = Transactions.makeClosingTx(commitment.commitInput, localScriptPubkey, remoteScriptPubkey, commitment.params.localParams.paysClosingFees, dustLimit, closingFees.preferred, commitment.localCommit.spec)
val localClosingSig = Transactions.sign(closingTx, channelKeys.fundingKey(commitment.fundingTxIndex))
val closingSigned = ClosingSigned(commitment.channelId, closingFees.preferred, localClosingSig, TlvStream(ClosingSignedTlv.FeeRange(closingFees.min, closingFees.max)))
return Pair(closingTx, closingSigned)
}
fun checkClosingSignature(
channelKeys: KeyManager.ChannelKeys,
commitment: FullCommitment,
localScriptPubkey: ByteArray,
remoteScriptPubkey: ByteArray,
remoteClosingFee: Satoshi,
remoteClosingSig: ByteVector64
): Either> {
val (closingTx, closingSigned) = makeClosingTx(channelKeys, commitment, localScriptPubkey, remoteScriptPubkey, ClosingFees(remoteClosingFee))
return if (checkClosingDustAmounts(closingTx)) {
val signedClosingTx = Transactions.addSigs(closingTx, channelKeys.fundingPubKey(commitment.fundingTxIndex), commitment.remoteFundingPubkey, closingSigned.signature, remoteClosingSig)
when (Transactions.checkSpendable(signedClosingTx)) {
is Try.Success -> Either.Right(Pair(signedClosingTx, closingSigned))
is Try.Failure -> Either.Left(InvalidCloseSignature(commitment.channelId, signedClosingTx.tx.txid))
}
} else {
Either.Left(InvalidCloseAmountBelowDust(commitment.channelId, closingTx.tx.txid))
}
}
/**
* Check that all closing outputs are above bitcoin's dust limit for their script type, otherwise there is a risk
* that the closing transaction will not be relayed to miners' mempool and will not confirm.
* The various dust limits are detailed in https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#dust-limits
*/
fun checkClosingDustAmounts(closingTx: ClosingTx): Boolean {
return closingTx.tx.txOut.all { txOut ->
val publicKeyScript = Script.parse(txOut.publicKeyScript)
when {
Script.isPay2pkh(publicKeyScript) -> txOut.amount >= 546.sat
Script.isPay2sh(publicKeyScript) -> txOut.amount >= 540.sat
Script.isPay2wpkh(publicKeyScript) -> txOut.amount >= 294.sat
Script.isPay2wsh(publicKeyScript) -> txOut.amount >= 330.sat
Script.isNativeWitnessScript(publicKeyScript) -> txOut.amount >= 354.sat
else -> txOut.amount >= 546.sat
}
}
}
/**
* Claim all the outputs that we've received from our current commit tx. This will be done using 2nd stage HTLC transactions.
*
* @param commitment our commitment data, which includes payment preimages.
* @return a list of transactions (one per output that we can claim).
*/
fun LoggingContext.claimCurrentLocalCommitTxOutputs(channelKeys: KeyManager.ChannelKeys, commitment: FullCommitment, tx: Transaction, feerates: OnChainFeerates): LocalCommitPublished {
val localCommit = commitment.localCommit
val localParams = commitment.params.localParams
require(localCommit.publishableTxs.commitTx.tx.txid == tx.txid) { "txid mismatch, provided tx is not the current local commit tx" }
val localPerCommitmentPoint = channelKeys.commitmentPoint(commitment.localCommit.index)
val localRevocationPubkey = commitment.params.remoteParams.revocationBasepoint.deriveForRevocation(localPerCommitmentPoint)
val localDelayedPubkey = channelKeys.delayedPaymentBasepoint.deriveForCommitment(localPerCommitmentPoint)
val feerateDelayed = feerates.claimMainFeerate
// first we will claim our main output as soon as the delay is over
val mainDelayedTx = generateTx("main-delayed-output") {
Transactions.makeClaimLocalDelayedOutputTx(
tx,
localParams.dustLimit,
localRevocationPubkey,
commitment.params.remoteParams.toSelfDelay,
localDelayedPubkey,
localParams.defaultFinalScriptPubKey.toByteArray(),
feerateDelayed
)
}?.let {
val sig = Transactions.sign(it, channelKeys.delayedPaymentKey.deriveForCommitment(localPerCommitmentPoint), SigHash.SIGHASH_ALL)
Transactions.addSigs(it, sig)
}
// those are the preimages to existing received htlcs
val preimages = commitment.changes.localChanges.all.filterIsInstance().map { it.paymentPreimage }
val htlcTxs = localCommit.publishableTxs.htlcTxsAndSigs.associate { (txInfo, localSig, remoteSig) ->
when (txInfo) {
is HtlcSuccessTx -> when (val preimage = preimages.firstOrNull { r -> r.sha256() == txInfo.paymentHash }) {
// incoming htlc for which we don't have the preimage: we can't spend it immediately, but we may learn the
// preimage later, otherwise it will eventually timeout and they will get their funds back
null -> Pair(txInfo.input.outPoint, null)
// incoming htlc for which we have the preimage: we can spend it directly
else -> Pair(txInfo.input.outPoint, Transactions.addSigs(txInfo, localSig, remoteSig, preimage))
}
// outgoing htlc: they may or may not have the preimage, the only thing to do is try to get back our funds after timeout
is HtlcTimeoutTx -> Pair(txInfo.input.outPoint, Transactions.addSigs(txInfo, localSig, remoteSig))
}
}
// all htlc output to us are delayed, so we need to claim them as soon as the delay is over
val htlcDelayedTxs = htlcTxs.values.filterNotNull().mapNotNull { txInfo ->
generateTx("claim-htlc-delayed") {
Transactions.makeClaimLocalDelayedOutputTx(
txInfo.tx,
localParams.dustLimit,
localRevocationPubkey,
commitment.params.remoteParams.toSelfDelay,
localDelayedPubkey,
localParams.defaultFinalScriptPubKey.toByteArray(),
feerateDelayed
)
}?.let {
val sig = Transactions.sign(it, channelKeys.delayedPaymentKey.deriveForCommitment(localPerCommitmentPoint), SigHash.SIGHASH_ALL)
Transactions.addSigs(it, sig)
}
}
return LocalCommitPublished(
commitTx = tx,
claimMainDelayedOutputTx = mainDelayedTx,
htlcTxs = htlcTxs,
claimHtlcDelayedTxs = htlcDelayedTxs,
claimAnchorTxs = emptyList(),
irrevocablySpent = emptyMap()
)
}
/**
* Claim all the outputs that we've received from their current commit tx.
*
* @param commitment our commitment data, which includes payment preimages.
* @param remoteCommit the remote commitment data to use to claim outputs (it can be their current or next commitment).
* @param tx the remote commitment transaction that has just been published.
* @return a list of transactions (one per output that we can claim).
*/
fun LoggingContext.claimRemoteCommitTxOutputs(channelKeys: KeyManager.ChannelKeys, commitment: FullCommitment, remoteCommit: RemoteCommit, tx: Transaction, feerates: OnChainFeerates): RemoteCommitPublished {
val localParams = commitment.params.localParams
val remoteParams = commitment.params.remoteParams
val commitInput = commitment.commitInput
val (remoteCommitTx, _) = Commitments.makeRemoteTxs(
channelKeys,
commitTxNumber = remoteCommit.index,
localParams,
remoteParams,
fundingTxIndex = commitment.fundingTxIndex,
remoteFundingPubKey = commitment.remoteFundingPubkey,
commitInput,
remoteCommit.remotePerCommitmentPoint,
remoteCommit.spec
)
require(remoteCommitTx.tx.txid == tx.txid) { "txid mismatch, provided tx is not the current remote commit tx" }
val localPaymentPubkey = channelKeys.paymentBasepoint
val localHtlcPubkey = channelKeys.htlcBasepoint.deriveForCommitment(remoteCommit.remotePerCommitmentPoint)
val remoteDelayedPaymentPubkey = remoteParams.delayedPaymentBasepoint.deriveForCommitment(remoteCommit.remotePerCommitmentPoint)
val remoteHtlcPubkey = remoteParams.htlcBasepoint.deriveForCommitment(remoteCommit.remotePerCommitmentPoint)
val remoteRevocationPubkey = channelKeys.revocationBasepoint.deriveForRevocation(remoteCommit.remotePerCommitmentPoint)
val outputs = makeCommitTxOutputs(
commitment.remoteFundingPubkey,
channelKeys.fundingPubKey(commitment.fundingTxIndex),
!localParams.paysCommitTxFees,
remoteParams.dustLimit,
remoteRevocationPubkey,
localParams.toSelfDelay,
remoteDelayedPaymentPubkey,
localPaymentPubkey,
remoteHtlcPubkey,
localHtlcPubkey,
remoteCommit.spec
)
// we need to use a rather high fee for htlc-claim because we compete with the counterparty
val feerateClaimHtlc = feerates.fastFeerate
// those are the preimages to existing received htlcs
val preimages = commitment.changes.localChanges.all.filterIsInstance().map { it.paymentPreimage }
// remember we are looking at the remote commitment so IN for them is really OUT for us and vice versa
val claimHtlcTxs = remoteCommit.spec.htlcs.mapNotNull { htlc ->
when (htlc) {
is OutgoingHtlc -> {
generateTx("claim-htlc-success") {
Transactions.makeClaimHtlcSuccessTx(
remoteCommitTx.tx,
outputs,
localParams.dustLimit,
localHtlcPubkey,
remoteHtlcPubkey,
remoteRevocationPubkey,
localParams.defaultFinalScriptPubKey.toByteArray(),
htlc.add,
feerateClaimHtlc
)
}?.let { claimHtlcTx ->
when (val preimage = preimages.firstOrNull { r -> r.sha256() == htlc.add.paymentHash }) {
// incoming htlc for which we don't have the preimage: we can't spend it immediately, but we may learn the
// preimage later, otherwise it will eventually timeout and they will get their funds back
null -> Pair(claimHtlcTx.input.outPoint, null)
// incoming htlc for which we have the preimage: we can spend it directly
else -> {
val sig = Transactions.sign(claimHtlcTx, channelKeys.htlcKey.deriveForCommitment(remoteCommit.remotePerCommitmentPoint), SigHash.SIGHASH_ALL)
Pair(claimHtlcTx.input.outPoint, Transactions.addSigs(claimHtlcTx, sig, preimage))
}
}
}
}
is IncomingHtlc -> {
// outgoing htlc: they may or may not have the preimage, the only thing to do is try to get back our funds after timeout
generateTx("claim-htlc-timeout") {
Transactions.makeClaimHtlcTimeoutTx(
remoteCommitTx.tx,
outputs,
localParams.dustLimit,
localHtlcPubkey,
remoteHtlcPubkey,
remoteRevocationPubkey,
localParams.defaultFinalScriptPubKey.toByteArray(),
htlc.add,
feerateClaimHtlc
)
}?.let { claimHtlcTx ->
val sig = Transactions.sign(claimHtlcTx, channelKeys.htlcKey.deriveForCommitment(remoteCommit.remotePerCommitmentPoint), SigHash.SIGHASH_ALL)
Pair(claimHtlcTx.input.outPoint, Transactions.addSigs(claimHtlcTx, sig))
}
}
}
}.toMap()
// we claim our output and add the htlc txs we just created
return claimRemoteCommitMainOutput(channelKeys, commitment.params, tx, feerates.claimMainFeerate).copy(claimHtlcTxs = claimHtlcTxs)
}
/**
* Claim our main output only from their commit tx.
*
* @param tx the remote commitment transaction that has just been published.
* @return a transaction to claim our main output.
*/
internal fun LoggingContext.claimRemoteCommitMainOutput(channelKeys: KeyManager.ChannelKeys, params: ChannelParams, tx: Transaction, claimMainFeerate: FeeratePerKw): RemoteCommitPublished {
val localPaymentPoint = channelKeys.paymentBasepoint
val mainTx = generateTx("claim-remote-delayed-output") {
Transactions.makeClaimRemoteDelayedOutputTx(
tx,
params.localParams.dustLimit,
localPaymentPoint,
params.localParams.defaultFinalScriptPubKey,
claimMainFeerate
)
}?.let {
val sig = Transactions.sign(it, channelKeys.paymentKey)
Transactions.addSigs(it, sig)
}
return RemoteCommitPublished(commitTx = tx, claimMainOutputTx = mainTx)
}
/**
* When an unexpected transaction spending the funding tx is detected, we must be in one of the following scenarios:
*
* - it is a revoked commitment: we then extract the remote per-commitment secret and publish penalty transactions
* - it is a future commitment: if we lost future state, our peer could publish a future commitment (which may be
* revoked, but we won't be able to know because we lost the corresponding state)
* - it is not a valid commitment transaction: if our peer was able to steal our funding private key, they can
* spend the funding transaction however they want, and we won't be able to do anything about it
*
* This function returns the per-commitment secret in the first case, and null in the other cases.
*/
fun getRemotePerCommitmentSecret(channelKeys: KeyManager.ChannelKeys, params: ChannelParams, remotePerCommitmentSecrets: ShaChain, tx: Transaction): Pair? {
// a valid tx will always have at least one input, but this ensures we don't throw in tests
val sequence = tx.txIn.first().sequence
val obscuredTxNumber = Transactions.decodeTxNumber(sequence, tx.lockTime)
val localPaymentPoint = channelKeys.paymentBasepoint
// this tx has been published by remote, so we need to invert local/remote params
val commitmentNumber = Transactions.obscuredCommitTxNumber(obscuredTxNumber, !params.localParams.isChannelOpener, params.remoteParams.paymentBasepoint, localPaymentPoint)
if (commitmentNumber > 0xffffffffffffL) {
// txNumber must be lesser than 48 bits long
return null
}
// now we know what commit number this tx is referring to, we can derive the commitment point from the shachain
val hash = remotePerCommitmentSecrets.getHash(0xFFFFFFFFFFFFL - commitmentNumber) ?: return null
return Pair(PrivateKey(hash), commitmentNumber)
}
/**
* When a revoked commitment transaction spending the funding tx is detected, we build a set of transactions that
* will punish our peer by stealing all their funds.
*/
fun LoggingContext.claimRevokedRemoteCommitTxOutputs(channelKeys: KeyManager.ChannelKeys, params: ChannelParams, remotePerCommitmentSecret: PrivateKey, commitTx: Transaction, feerates: OnChainFeerates): RevokedCommitPublished {
val localPaymentPoint = channelKeys.paymentBasepoint
val remotePerCommitmentPoint = remotePerCommitmentSecret.publicKey()
val remoteDelayedPaymentPubkey = params.remoteParams.delayedPaymentBasepoint.deriveForCommitment(remotePerCommitmentPoint)
val remoteRevocationPubkey = channelKeys.revocationBasepoint.deriveForRevocation(remotePerCommitmentPoint)
val feerateMain = feerates.claimMainFeerate
// we need to use a high fee here for punishment txs because after a delay they can be spent by the counterparty
val feeratePenalty = feerates.fastFeerate
// first we will claim our main output right away
val mainTx = generateTx("claim-remote-delayed-output") {
Transactions.makeClaimRemoteDelayedOutputTx(
commitTx,
params.localParams.dustLimit,
localPaymentPoint,
params.localParams.defaultFinalScriptPubKey,
feerateMain
)
}?.let {
val sig = Transactions.sign(it, channelKeys.paymentKey)
Transactions.addSigs(it, sig)
}
// then we punish them by stealing their main output
val mainPenaltyTx = generateTx("main-penalty") {
Transactions.makeMainPenaltyTx(
commitTx,
params.localParams.dustLimit,
remoteRevocationPubkey,
params.localParams.defaultFinalScriptPubKey.toByteArray(),
params.localParams.toSelfDelay,
remoteDelayedPaymentPubkey,
feeratePenalty
)
}?.let {
val sig = Transactions.sign(it, channelKeys.revocationKey.deriveForRevocation(remotePerCommitmentSecret))
Transactions.addSigs(it, sig)
}
return RevokedCommitPublished(commitTx = commitTx, remotePerCommitmentSecret = remotePerCommitmentSecret, claimMainOutputTx = mainTx, mainPenaltyTx = mainPenaltyTx)
}
/**
* Once we've fetched htlc information for a revoked commitment from the DB, we create penalty transactions to claim all htlc outputs.
*/
fun LoggingContext.claimRevokedRemoteCommitTxHtlcOutputs(
channelKeys: KeyManager.ChannelKeys,
params: ChannelParams,
revokedCommitPublished: RevokedCommitPublished,
feerates: OnChainFeerates,
htlcInfos: List
): RevokedCommitPublished {
// we need to use a high fee here for punishment txs because after a delay they can be spent by the counterparty
val feeratePenalty = feerates.fastFeerate
val remotePerCommitmentPoint = revokedCommitPublished.remotePerCommitmentSecret.publicKey()
val remoteRevocationPubkey = channelKeys.revocationBasepoint.deriveForRevocation(remotePerCommitmentPoint)
val remoteHtlcPubkey = params.remoteParams.htlcBasepoint.deriveForCommitment(remotePerCommitmentPoint)
val localHtlcPubkey = channelKeys.htlcBasepoint.deriveForCommitment(remotePerCommitmentPoint)
// we retrieve the information needed to rebuild htlc scripts
logger.info { "found ${htlcInfos.size} htlcs for txid=${revokedCommitPublished.commitTx.txid}" }
val htlcsRedeemScripts = htlcInfos.flatMap { htlcInfo ->
val htlcReceived = Scripts.htlcReceived(remoteHtlcPubkey, localHtlcPubkey, remoteRevocationPubkey, ripemd160(htlcInfo.paymentHash), htlcInfo.cltvExpiry)
val htlcOffered = Scripts.htlcOffered(remoteHtlcPubkey, localHtlcPubkey, remoteRevocationPubkey, ripemd160(htlcInfo.paymentHash))
listOf(htlcReceived, htlcOffered)
}.associate { redeemScript -> write(pay2wsh(redeemScript)).toByteVector() to write(redeemScript).toByteVector() }
// and finally we steal the htlc outputs
val htlcPenaltyTxs = revokedCommitPublished.commitTx.txOut.mapIndexedNotNull { outputIndex, txOut ->
htlcsRedeemScripts[txOut.publicKeyScript]?.let { redeemScript ->
generateTx("htlc-penalty") {
Transactions.makeHtlcPenaltyTx(
revokedCommitPublished.commitTx,
outputIndex,
redeemScript.toByteArray(),
params.localParams.dustLimit,
params.localParams.defaultFinalScriptPubKey.toByteArray(),
feeratePenalty
)
}?.let { htlcPenaltyTx ->
val sig = Transactions.sign(htlcPenaltyTx, channelKeys.revocationKey.deriveForRevocation(revokedCommitPublished.remotePerCommitmentSecret))
Transactions.addSigs(htlcPenaltyTx, sig, remoteRevocationPubkey)
}
}
}
return revokedCommitPublished.copy(htlcPenaltyTxs = htlcPenaltyTxs)
}
/**
* Claims the output of an [[HtlcSuccessTx]] or [[HtlcTimeoutTx]] transaction using a revocation key.
*
* In case a revoked commitment with pending HTLCs is published, there are two ways the HTLC outputs can be taken as punishment:
* - by spending the corresponding output of the commitment tx, using [[ClaimHtlcDelayedOutputPenaltyTx]] that we generate as soon as we detect that a revoked commit
* has been spent; note that those transactions will compete with [[HtlcSuccessTx]] and [[HtlcTimeoutTx]] published by the counterparty.
* - by spending the delayed output of [[HtlcSuccessTx]] and [[HtlcTimeoutTx]] if those get confirmed; because the output of these txs is protected by
* an OP_CSV delay, we will have time to spend them with a revocation key. In that case, we generate the spending transactions "on demand",
* this is the purpose of this method.
*
* NB: when anchor outputs is used, htlc transactions can be aggregated in a single transaction if they share the same
* lockTime (thanks to the use of sighash_single | sighash_anyonecanpay), so we may need to claim multiple outputs.
*/
fun LoggingContext.claimRevokedHtlcTxOutputs(
channelKeys: KeyManager.ChannelKeys,
params: ChannelParams,
revokedCommitPublished: RevokedCommitPublished,
htlcTx: Transaction,
feerates: OnChainFeerates
): Pair> {
val claimTxs = buildList {
revokedCommitPublished.claimMainOutputTx?.let { add(it) }
revokedCommitPublished.mainPenaltyTx?.let { add(it) }
addAll(revokedCommitPublished.htlcPenaltyTxs)
}
val isHtlcTx = htlcTx.txIn.any { it.outPoint.txid == revokedCommitPublished.commitTx.txid } && !claimTxs.any { it.tx.txid == htlcTx.txid }
if (isHtlcTx) {
logger.info { "looks like txid=${htlcTx.txid} could be a 2nd level htlc tx spending revoked commit txid=${revokedCommitPublished.commitTx.txid}" }
// Let's assume that htlcTx is an HtlcSuccessTx or HtlcTimeoutTx and try to generate a tx spending its output using a revocation key
val remotePerCommitmentPoint = revokedCommitPublished.remotePerCommitmentSecret.publicKey()
val remoteDelayedPaymentPubkey = params.remoteParams.delayedPaymentBasepoint.deriveForCommitment(remotePerCommitmentPoint)
val remoteRevocationPubkey = channelKeys.revocationBasepoint.deriveForRevocation(remotePerCommitmentPoint)
// we need to use a high fee here for punishment txs because after a delay they can be spent by the counterparty
val feeratePenalty = feerates.fastFeerate
val penaltyTxs = Transactions.makeClaimDelayedOutputPenaltyTxs(
htlcTx,
params.localParams.dustLimit,
remoteRevocationPubkey,
params.localParams.toSelfDelay,
remoteDelayedPaymentPubkey,
params.localParams.defaultFinalScriptPubKey.toByteArray(),
feeratePenalty
).mapNotNull { claimDelayedOutputPenaltyTx ->
generateTx("claim-htlc-delayed-penalty") {
claimDelayedOutputPenaltyTx
}?.let {
val sig = Transactions.sign(it, channelKeys.revocationKey.deriveForRevocation(revokedCommitPublished.remotePerCommitmentSecret))
val signedTx = Transactions.addSigs(it, sig)
// we need to make sure that the tx is indeed valid
when (runTrying { signedTx.tx.correctlySpends(listOf(htlcTx), ScriptFlags.STANDARD_SCRIPT_VERIFY_FLAGS) }) {
is Try.Success -> signedTx
is Try.Failure -> null
}
}
}
return revokedCommitPublished.copy(claimHtlcDelayedPenaltyTxs = revokedCommitPublished.claimHtlcDelayedPenaltyTxs + penaltyTxs) to penaltyTxs
} else {
return revokedCommitPublished to listOf()
}
}
/**
* In CLOSING state, any time we see a new transaction, we try to extract a preimage from it in order to fulfill the
* corresponding incoming htlc in an upstream channel.
*
* Not doing that would result in us losing money, because the downstream node would pull money from one side, and
* the upstream node would get refunded after a timeout.
*
* @return a set of pairs (add, preimage) if extraction was successful:
* - add is the htlc in the downstream channel from which we extracted the preimage
* - preimage needs to be sent to the upstream channel
*/
fun LoggingContext.extractPreimages(localCommit: LocalCommit, tx: Transaction): Set> {
val htlcSuccess = tx.txIn.map { it.witness }.mapNotNull(Scripts.extractPreimageFromHtlcSuccess())
.onEach { logger.info { "extracted paymentPreimage=$it from tx=$tx (htlc-success)" } }
val claimHtlcSuccess = tx.txIn.map { it.witness }.mapNotNull(Scripts.extractPreimageFromClaimHtlcSuccess())
.onEach { logger.info { "extracted paymentPreimage=$it from tx=$tx (claim-htlc-success)" } }
val paymentPreimages = (htlcSuccess + claimHtlcSuccess).toSet()
return paymentPreimages.flatMap { paymentPreimage ->
// we only consider htlcs in our local commitment, because we only care about outgoing htlcs, which disappear first in the remote commitment
// if an outgoing htlc is in the remote commitment, then:
// - either it is in the local commitment (it was never fulfilled)
// - or we have already received the fulfill and forwarded it upstream
localCommit.spec.htlcs.filter { it is OutgoingHtlc && it.add.paymentHash.contentEquals(sha256(paymentPreimage)) }.map { it.add to paymentPreimage }
}.toSet()
}
/**
* In CLOSING state, when we are notified that a transaction has been confirmed, we analyze it to find out if one or
* more htlcs have timed out and need to be failed in an upstream channel.
*
* @param tx a tx that has reached min_depth
* @return a set of htlcs that need to be failed upstream
*/
fun LoggingContext.timedOutHtlcs(localCommit: LocalCommit, localCommitPublished: LocalCommitPublished, localDustLimit: Satoshi, tx: Transaction): Set {
val untrimmedHtlcs = Transactions.trimOfferedHtlcs(localDustLimit, localCommit.spec).map { it.add }
return when {
tx.txid == localCommit.publishableTxs.commitTx.tx.txid -> {
// the tx is a commitment tx, we can immediately fail all dust htlcs (they don't have an output in the tx)
(localCommit.spec.htlcs.outgoings() - untrimmedHtlcs.toSet()).toSet()
}
localCommitPublished.isHtlcTimeout(tx) -> {
// maybe this is a timeout tx, in that case we can resolve and fail the corresponding htlc
tx.txIn.mapNotNull { txIn ->
when (val htlcTx = localCommitPublished.htlcTxs[txIn.outPoint]) {
is HtlcTimeoutTx -> when (val htlc = untrimmedHtlcs.find { it.id == htlcTx.htlcId }) {
null -> {
logger.error { "could not find htlc #${htlcTx.htlcId} for htlc-timeout tx=$tx" }
null
}
else -> {
logger.info { "htlc-timeout tx for htlc #${htlc.id} paymentHash=${htlc.paymentHash} expiry=${tx.lockTime} has been confirmed (tx=$tx)" }
htlc
}
}
else -> null
}
}.toSet()
}
else -> emptySet()
}
}
/**
* In CLOSING state, when we are notified that a transaction has been confirmed, we analyze it to find out if one or
* more htlcs have timed out and need to be failed in an upstream channel.
*
* @param tx a tx that has reached min_depth
* @return a set of htlcs that need to be failed upstream
*/
fun LoggingContext.timedOutHtlcs(remoteCommit: RemoteCommit, remoteCommitPublished: RemoteCommitPublished, remoteDustLimit: Satoshi, tx: Transaction): Set {
val untrimmedHtlcs = Transactions.trimReceivedHtlcs(remoteDustLimit, remoteCommit.spec).map { it.add }
return when {
tx.txid == remoteCommit.txid -> {
// the tx is a commitment tx, we can immediately fail all dust htlcs (they don't have an output in the tx)
(remoteCommit.spec.htlcs.incomings() - untrimmedHtlcs.toSet()).toSet()
}
remoteCommitPublished.isClaimHtlcTimeout(tx) -> {
// maybe this is a timeout tx, in that case we can resolve and fail the corresponding htlc
tx.txIn.mapNotNull { txIn ->
when (val htlcTx = remoteCommitPublished.claimHtlcTxs[txIn.outPoint]) {
is ClaimHtlcTimeoutTx -> when (val htlc = untrimmedHtlcs.find { it.id == htlcTx.htlcId }) {
null -> {
logger.error { "could not find htlc #${htlcTx.htlcId} for claim-htlc-timeout tx=$tx" }
null
}
else -> {
logger.info { "claim-htlc-timeout tx for htlc #${htlc.id} paymentHash=${htlc.paymentHash} expiry=${tx.lockTime} has been confirmed (tx=$tx)" }
htlc
}
}
else -> null
}
}.toSet()
}
else -> emptySet()
}
}
/**
* As soon as a local or remote commitment reaches min_depth, we know which htlcs will be settled on-chain (whether
* or not they actually have an output in the commitment tx).
*
* @param tx a transaction that is sufficiently buried in the blockchain
*/
fun onChainOutgoingHtlcs(localCommit: LocalCommit, remoteCommit: RemoteCommit, nextRemoteCommit: RemoteCommit?, tx: Transaction): Set = when {
localCommit.publishableTxs.commitTx.tx.txid == tx.txid -> localCommit.spec.htlcs.outgoings().toSet()
remoteCommit.txid == tx.txid -> remoteCommit.spec.htlcs.incomings().toSet()
nextRemoteCommit?.txid == tx.txid -> nextRemoteCommit.spec.htlcs.incomings().toSet()
else -> emptySet()
}
/**
* If a commitment tx reaches min_depth, we need to fail the outgoing htlcs that will never reach the blockchain.
* It could be because only us had signed them, or because a revoked commitment got confirmed.
*/
fun overriddenOutgoingHtlcs(localCommit: LocalCommit, remoteCommit: RemoteCommit, nextRemoteCommit: RemoteCommit?, revokedCommitPublished: List, tx: Transaction): Set = when {
localCommit.publishableTxs.commitTx.tx.txid == tx.txid -> {
// our commit got confirmed, so any htlc that is in their commitment but not in ours will never reach the chain
val htlcsInRemoteCommit = remoteCommit.spec.htlcs + nextRemoteCommit?.spec?.htlcs.orEmpty()
// NB: from the point of view of the remote, their incoming htlcs are our outgoing htlcs
htlcsInRemoteCommit.incomings().toSet() - localCommit.spec.htlcs.outgoings().toSet()
}
revokedCommitPublished.map { it.commitTx.txid }.contains(tx.txid) -> {
// a revoked commitment got confirmed: we will claim its outputs, but we also need to fail htlcs that are pending in the latest commitment
(nextRemoteCommit ?: remoteCommit).spec.htlcs.incomings().toSet()
}
remoteCommit.txid == tx.txid -> when (nextRemoteCommit) {
null -> emptySet() // their last commitment got confirmed, so no htlcs will be overridden, they will timeout or be fulfilled on chain
else -> {
// we had signed a new commitment but they committed the previous one
// any htlc that we signed in the new commitment that they didn't sign will never reach the chain
nextRemoteCommit.spec.htlcs.incomings().toSet() - localCommit.spec.htlcs.outgoings().toSet()
}
}
else -> emptySet()
}
/**
* This helper function tells if the utxos consumed by the given transaction has already been irrevocably spent (possibly by this very transaction)
*
* It can be useful to:
* - not attempt to publish this tx when we know this will fail
* - not watch for confirmations if we know the tx is already confirmed
* - not watch the corresponding utxo when we already know the final spending tx
*
* @param irrevocablySpent a map of known spent outpoints
* @return true if we know for sure that the utxos consumed by the tx have already irrevocably been spent, false otherwise
*/
fun Transaction.inputsAlreadySpent(irrevocablySpent: Map): Boolean {
// NB: some transactions may have multiple inputs (e.g. htlc txs)
val outPoints = txIn.map { it.outPoint }
return outPoints.any { irrevocablySpent.contains(it) }
}
/**
* Wraps transaction generation in a Try and filters failures to avoid one transaction negatively impacting a whole commitment.
*/
private fun LoggingContext.generateTx(desc: String, attempt: () -> Transactions.TxResult): T? =
when (val result = runTrying { attempt() }) {
is Try.Success -> when (val txResult = result.get()) {
is Transactions.TxResult.Success -> {
logger.info { "tx generation success: desc=$desc txid=${txResult.result.tx.txid} amount=${txResult.result.tx.txOut.map { it.amount }.sum()} tx=${txResult.result.tx}" }
txResult.result
}
is Transactions.TxResult.Skipped -> {
logger.info { "tx generation skipped: desc=$desc reason: ${txResult.why}" }
null
}
}
is Try.Failure -> {
logger.warning { "tx generation failure: desc=$desc reason: ${result.error.message}" }
null
}
}
}
}