Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package fr.acinq.lightning.crypto.sphinx
import fr.acinq.bitcoin.*
import fr.acinq.bitcoin.Script.tail
import fr.acinq.bitcoin.crypto.Digest
import fr.acinq.bitcoin.crypto.hmac
import fr.acinq.bitcoin.io.ByteArrayInput
import fr.acinq.bitcoin.io.ByteArrayOutput
import fr.acinq.bitcoin.utils.Either
import fr.acinq.bitcoin.utils.Try
import fr.acinq.bitcoin.utils.runTrying
import fr.acinq.lightning.crypto.ChaCha20
import fr.acinq.lightning.utils.*
import fr.acinq.lightning.wire.*
import fr.acinq.secp256k1.Hex
/**
* Decrypting an onion packet yields a payload for the current node and the encrypted packet for the next node.
*
* @param payload decrypted payload for this node.
* @param nextPacket packet for the next node.
* @param sharedSecret shared secret for the sending node, which we will need to return failure messages.
*/
data class DecryptedPacket(val payload: ByteVector, val nextPacket: OnionRoutingPacket, val sharedSecret: ByteVector32) {
val isLastPacket: Boolean = nextPacket.hmac == ByteVector32.Zeroes
}
data class SharedSecrets(val perHopSecrets: List>)
data class PacketAndSecrets(val packet: OnionRoutingPacket, val sharedSecrets: SharedSecrets)
/**
* see https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
*/
object Sphinx {
// We use HMAC-SHA256 which returns 32-bytes message authentication codes.
const val MacLength = 32
/** Secp256k1's base point. */
private val CurveG = PublicKey(ByteVector("0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"))
fun mac(key: ByteArray, message: ByteArray): ByteVector32 = Digest.sha256().hmac(key, message, 64).toByteVector32()
fun mac(key: ByteVector, message: ByteVector): ByteVector32 = mac(key.toByteArray(), message.toByteArray())
private fun generateKey(keyType: ByteArray, secret: ByteVector32): ByteVector32 = mac(keyType, secret.toByteArray())
fun generateKey(keyType: String, secret: ByteVector32): ByteVector32 = generateKey(keyType.encodeToByteArray(), secret)
fun zeroes(length: Int): ByteArray = ByteArray(length)
fun generateStream(key: ByteVector32, length: Int): ByteArray = ChaCha20.encrypt(zeroes(length), key.toByteArray(), zeroes(12))
fun computeSharedSecret(pub: PublicKey, secret: PrivateKey): ByteVector32 = Crypto.sha256(pub.times(secret).value).toByteVector32()
fun computeBlindingFactor(pub: PublicKey, secret: ByteVector): ByteVector32 = Crypto.sha256(pub.value + secret).toByteVector32()
fun blind(pub: PublicKey, blindingFactor: ByteVector32): PublicKey = pub.times(PrivateKey(blindingFactor))
fun blind(pub: PublicKey, blindingFactors: List): PublicKey = blindingFactors.fold(pub) { a, b -> blind(a, b) }
/** When an invalid onion is received, its hash should be included in the failure message. */
fun hash(onion: OnionRoutingPacket): ByteVector32 = Crypto.sha256(OnionRoutingPacketSerializer(onion.payload.size()).write(onion)).toByteVector32()
/**
* Compute the ephemeral public keys and shared secrets for all nodes on the route.
*
* @param sessionKey this node's session key.
* @param publicKeys public keys of each node on the route.
* @return a tuple (ephemeral public keys, shared secrets).
*/
fun computeEphemeralPublicKeysAndSharedSecrets(sessionKey: PrivateKey, publicKeys: List): Pair, List> {
val ephemeralPublicKey0 = blind(CurveG, sessionKey.value)
val secret0 = computeSharedSecret(publicKeys.first(), sessionKey)
val blindingFactor0 = computeBlindingFactor(ephemeralPublicKey0, secret0)
return computeEphemeralPublicKeysAndSharedSecrets(sessionKey, publicKeys.drop(1), listOf(ephemeralPublicKey0), listOf(blindingFactor0), listOf(secret0))
}
private tailrec fun computeEphemeralPublicKeysAndSharedSecrets(
sessionKey: PrivateKey,
publicKeys: List,
ephemeralPublicKeys: List,
blindingFactors: List,
sharedSecrets: List
): Pair, List> {
return if (publicKeys.isEmpty())
Pair(ephemeralPublicKeys, sharedSecrets)
else {
val ephemeralPublicKey = blind(ephemeralPublicKeys.last(), blindingFactors.last())
val secret = computeSharedSecret(blind(publicKeys.first(), blindingFactors), sessionKey)
val blindingFactor = computeBlindingFactor(ephemeralPublicKey, secret)
computeEphemeralPublicKeysAndSharedSecrets(sessionKey, publicKeys.drop(1), ephemeralPublicKeys + ephemeralPublicKey, blindingFactors + blindingFactor, sharedSecrets + secret)
}
}
/**
* The first bytes contain a varint encoding the length of the payload data (not including the trailing mac).
* That varint is considered to be part of the payload, so the payload length includes the number of bytes used by
* the varint prefix.
*
* @return the size of our payload
*/
fun decodePayloadLength(payload: ByteArray): Int {
val input = ByteArrayInput(payload)
val size = LightningCodecs.bigSize(input)
require(size > 0) { "legacy onion format is not supported" }
val sizeLength = payload.size - input.availableBytes
return MacLength + size.toInt() + sizeLength
}
/**
* Generate a deterministic filler to prevent intermediate nodes from knowing their position in the route.
* See https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#filler-generation
*
* @param keyType type of key used (depends on the onion we're building).
* @param sharedSecrets shared secrets for all the hops.
* @param payloads payloads for all the hops.
* @param packetLength length of the onion-encrypted payload (1300 for payment onions, variable for trampoline onions).
* @return filler bytes.
*/
fun generateFiller(keyType: String, sharedSecrets: List, payloads: List, packetLength: Int): ByteArray {
require(sharedSecrets.size == payloads.size) { "the number of secrets should equal the number of payloads" }
return (sharedSecrets zip payloads).fold(ByteArray(0)) { padding, secretAndPayload ->
val (secret, perHopPayload) = secretAndPayload
val perHopPayloadLength = decodePayloadLength(perHopPayload)
require(perHopPayloadLength == perHopPayload.size + MacLength) { "invalid payload: length isn't correctly encoded: $perHopPayload" }
val key = generateKey(keyType, secret)
val padding1 = padding + ByteArray(perHopPayloadLength)
val stream = generateStream(key, packetLength + perHopPayloadLength).takeLast(padding1.size).toByteArray()
padding1.xor(stream)
}
}
/**
* Decrypt the incoming packet, extract the per-hop payload and build the packet for the next node.
*
* @param privateKey this node's private key.
* @param associatedData associated data.
* @param packet packet received by this node.
* @return a DecryptedPacket(payload, packet, shared secret) object where:
* - payload is the per-hop payload for this node.
* - packet is the next packet, to be forwarded using the info that is given in the payload.
* - shared secret is the secret we share with the node that sent the packet. We need it to propagate
* failure messages upstream.
* or a BadOnion error containing the hash of the invalid onion.
*/
fun peel(privateKey: PrivateKey, associatedData: ByteVector, packet: OnionRoutingPacket): Either = when (packet.version) {
0 -> {
when (val result = runTrying {
val pub = PublicKey(packet.publicKey)
require(pub.isValid())
pub
}) {
is Try.Success -> {
val packetEphKey = result.result
val sharedSecret = computeSharedSecret(packetEphKey, privateKey)
val mu = generateKey("mu", sharedSecret)
val check = mac(mu, packet.payload + associatedData)
if (check == packet.hmac) {
val packetLength = packet.payload.size()
val rho = generateKey("rho", sharedSecret)
// Since we don't know the length of the per-hop payload (we will learn it once we decode the first bytes),
// we have to pessimistically generate a long cipher stream.
val stream = generateStream(rho, 2 * packetLength)
val bin = (packet.payload.toByteArray() + ByteArray(packetLength)) xor stream
when (val perHopPayloadLength = runTrying { decodePayloadLength(bin) }) {
is Try.Success -> {
val perHopPayload = bin.take(perHopPayloadLength.result - MacLength).toByteArray().toByteVector()
val hmac = ByteVector32(bin.slice(perHopPayloadLength.result - MacLength..perHopPayloadLength.result).toByteArray())
val nextOnionPayload = bin.drop(perHopPayloadLength.result).take(packetLength).toByteArray().toByteVector()
val nextPubKey = blind(packetEphKey, computeBlindingFactor(packetEphKey, sharedSecret))
Either.Right(DecryptedPacket(perHopPayload, OnionRoutingPacket(0, nextPubKey.value, nextOnionPayload, hmac), sharedSecret))
}
else -> Either.Left(InvalidOnionVersion(hash(packet)))
}
} else {
Either.Left(InvalidOnionHmac(hash(packet)))
}
}
else -> Either.Left(InvalidOnionKey(hash(packet)))
}
}
else -> Either.Left(InvalidOnionVersion(hash(packet)))
}
/**
* Wrap the given packet in an additional layer of onion encryption, adding an encrypted payload for a specific
* node.
*
* Packets are constructed in reverse order:
* - you first create the packet for the final recipient
* - then you call wrap(...) until you've built the final onion packet that will be sent to the first node in the
* route
*
* @param payload per-hop payload for the target node.
* @param associatedData associated data.
* @param ephemeralPublicKey ephemeral key shared with the target node.
* @param sharedSecret shared secret with this hop.
* @param packet current packet or random bytes if the packet hasn't been initialized.
* @param onionPayloadFiller optional onion payload filler, needed only when you're constructing the last packet.
* @return the next packet.
*/
private fun wrap(
payload: ByteArray,
associatedData: ByteVector32?,
ephemeralPublicKey: PublicKey,
sharedSecret: ByteVector32,
packet: Either,
onionPayloadFiller: ByteVector = ByteVector.empty
): OnionRoutingPacket {
val packetLength = when (packet) {
is Either.Left -> packet.value.size()
is Either.Right -> packet.value.payload.size()
}
require(payload.size <= packetLength - MacLength) { "packet payload cannot exceed ${packetLength - MacLength} bytes, is ${payload.size} bytes" }
val (currentMac, currentPayload) = when (packet) {
// Packet construction starts with an empty mac and random payload.
is Either.Left -> {
require(packet.value.size() == packetLength) { "invalid initial random bytes length" }
Pair(ByteVector32.Zeroes, packet.value)
}
is Either.Right -> Pair(packet.value.hmac, packet.value.payload)
}
val nextOnionPayload = run {
val onionPayload1 = payload.toByteVector() + currentMac + currentPayload.dropRight(payload.size + MacLength)
val onionPayload2 = onionPayload1.toByteArray() xor generateStream(generateKey("rho", sharedSecret), packetLength)
onionPayload2.dropLast(onionPayloadFiller.size()).toByteArray() + onionPayloadFiller.toByteArray()
}
val nextHmac = mac(generateKey("mu", sharedSecret), nextOnionPayload.toByteVector() + (associatedData ?: ByteVector.empty))
return OnionRoutingPacket(0, ephemeralPublicKey.value, nextOnionPayload.toByteVector(), nextHmac)
}
/**
* Create an encrypted onion packet that contains payloads for all nodes in the list.
*
* @param sessionKey session key.
* @param publicKeys node public keys (one per node).
* @param payloads payloads (one per node).
* @param associatedData associated data.
* @param packetLength length of the onion-encrypted payload (1300 for payment onions, variable for trampoline onions).
* @return An onion packet with all shared secrets. The onion packet can be sent to the first node in the list, and
* the shared secrets (one per node) can be used to parse returned failure messages if needed.
*/
fun create(sessionKey: PrivateKey, publicKeys: List, payloads: List, associatedData: ByteVector32?, packetLength: Int): PacketAndSecrets {
val (ephemeralPublicKeys, sharedsecrets) = computeEphemeralPublicKeysAndSharedSecrets(sessionKey, publicKeys)
val filler = generateFiller("rho", sharedsecrets.dropLast(1), payloads.dropLast(1), packetLength)
// We deterministically-derive the initial payload bytes: see https://github.com/lightningnetwork/lightning-rfc/pull/697
val startingBytes = generateStream(generateKey("pad", sessionKey.value), packetLength)
val lastPacket = wrap(payloads.last(), associatedData, ephemeralPublicKeys.last(), sharedsecrets.last(), Either.Left(startingBytes.toByteVector()), filler.toByteVector())
tailrec fun loop(hopPayloads: List, ephKeys: List, sharedSecrets: List, packet: OnionRoutingPacket): OnionRoutingPacket {
return if (hopPayloads.isEmpty()) packet else {
val nextPacket = wrap(hopPayloads.last(), associatedData, ephKeys.last(), sharedSecrets.last(), Either.Right(packet))
loop(hopPayloads.dropLast(1), ephKeys.dropLast(1), sharedSecrets.dropLast(1), nextPacket)
}
}
val packet = loop(payloads.dropLast(1), ephemeralPublicKeys.dropLast(1), sharedsecrets.dropLast(1), lastPacket)
return PacketAndSecrets(packet, SharedSecrets(sharedsecrets.zip(publicKeys)))
}
}
/**
* A properly decrypted failure from a node in the route.
*
* @param originNode public key of the node that generated the failure.
* @param failureMessage friendly failure message.
*/
data class DecryptedFailurePacket(val originNode: PublicKey, val failureMessage: FailureMessage)
/**
* An onion-encrypted failure packet from an intermediate node:
* +----------------+----------------------------------+-----------------+----------------------+-----+
* | HMAC(32 bytes) | failure message length (2 bytes) | failure message | pad length (2 bytes) | pad |
* +----------------+----------------------------------+-----------------+----------------------+-----+
* Bolt 4: SHOULD set pad such that the failure_len plus pad_len is equal to 256
*/
object FailurePacket {
private const val RecommendedPayloadLength = 256
fun encode(failure: FailureMessage, macKey: ByteVector32, payloadLength: Int = RecommendedPayloadLength): ByteArray {
val out = ByteArrayOutput()
val failureMessageBin = FailureMessage.encode(failure)
require(failureMessageBin.size <= payloadLength) { "encoded failure message overflows onion" }
LightningCodecs.writeU16(failureMessageBin.size, out)
LightningCodecs.writeBytes(failureMessageBin, out)
val padLen = payloadLength - failureMessageBin.size
LightningCodecs.writeU16(padLen, out)
LightningCodecs.writeBytes(ByteArray(padLen), out)
val packet = out.toByteArray()
return Sphinx.mac(macKey.toByteArray(), packet).toByteArray() + packet
}
fun decode(input: ByteArray, macKey: ByteVector32): Try {
val mac = input.take(32).toByteArray().toByteVector32()
val packet = input.drop(32).toByteArray()
if (Sphinx.mac(macKey.toByteArray(), packet) != mac) {
return Try.Failure(IllegalArgumentException("invalid error packet mac: ${Hex.encode(input)}"))
}
val payload = ByteArrayInput(packet)
return runTrying { FailureMessage.decode(LightningCodecs.bytes(payload, LightningCodecs.u16(payload))) }
}
/**
* Create a failure packet that will be returned to the sender.
* Each intermediate hop will add a layer of encryption and forward to the previous hop.
* Note that malicious intermediate hops may drop the packet or alter it (which breaks the mac).
*
* @param sharedSecret destination node's shared secret that was computed when the original onion for the HTLC
* was created or forwarded: see OnionPacket.create() and OnionPacket.wrap().
* @param failure failure message.
* @return a failure packet that can be sent to the destination node.
*/
fun create(sharedSecret: ByteVector32, failure: FailureMessage): ByteArray {
val um = Sphinx.generateKey("um", sharedSecret)
val packet = encode(failure, um)
return wrap(packet, sharedSecret)
}
/**
* Wrap the given packet in an additional layer of onion encryption for the previous hop.
*
* @param packet failure packet.
* @param sharedSecret destination node's shared secret.
* @return an encrypted failure packet that can be sent to the destination node.
*/
fun wrap(packet: ByteArray, sharedSecret: ByteVector32): ByteArray {
val key = Sphinx.generateKey("ammag", sharedSecret)
val stream = Sphinx.generateStream(key, packet.size)
return packet xor stream
}
/**
* Decrypt a failure packet. Node shared secrets are applied until the packet's MAC becomes valid, which means that
* it was sent by the corresponding node.
* Note that malicious nodes in the route may have altered the packet, triggering a decryption failure.
*
* @param packet failure packet.
* @param sharedSecrets nodes shared secrets.
* @return Success(secret, failure message) if the origin of the packet could be identified and the packet
* decrypted, Failure otherwise.
*/
fun decrypt(packet: ByteArray, sharedSecrets: SharedSecrets): Try {
fun loop(packet: ByteArray, secrets: List>): Try {
return if (secrets.isEmpty()) {
val ex = IllegalArgumentException("couldn't parse error packet=$packet with sharedSecrets=$secrets")
Try.Failure(ex)
} else {
val (secret, pubkey) = secrets.first()
val packet1 = wrap(packet, secret)
val um = Sphinx.generateKey("um", secret)
when (val error = decode(packet1, um)) {
is Try.Failure -> loop(packet1, secrets.tail())
is Try.Success -> Try.Success(DecryptedFailurePacket(pubkey, error.result))
}
}
}
return loop(packet, sharedSecrets.perHopSecrets)
}
}