All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.util.MutableDouble3D Maven / Gradle / Ivy

Go to download

MASON is a fast discrete-event multiagent simulation library core in Java, designed to be the foundation for large custom-purpose Java simulations, and also to provide more than enough functionality for many lightweight simulation needs. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D.

The newest version!
/*
  Copyright 2006 by Sean Luke and George Mason University
  Licensed under the Academic Free License version 3.0
  See the file "LICENSE" for more information
*/

package sim.util;

/** 
    MutableDouble3D is more or less the same class as javax.vecmath.Point3d, except that it is hash-equivalent to Double3D.  
        
    

Just as with MutableInt3D: you use MutableDouble3D as a STORED hash key at your peril: it has the same misfeature as javax.vecmath.Point3d, and you should read the warning in Double3D. However, you can look up Double3D-keyed objects in a hash table by passing in a MutableDouble3D instead. */ public final class MutableDouble3D implements java.io.Serializable, Cloneable { private static final long serialVersionUID = 1; public double x; public double y; public double z; public MutableDouble3D() { x = 0.0; y = 0.0; z = 0.0;} /** Explicitly assumes the z value is set to 0 */ public MutableDouble3D(final Int2D p) { x = p.x; y = p.y; z = 0.0; } public MutableDouble3D(final Int2D p, final double z) { x = p.x; y = p.y; this.z = z; } public MutableDouble3D(final Int3D p) { x = p.x; y = p.y ; z = p.z; } /** Explicitly assumes the z value is set to 0 */ public MutableDouble3D(final MutableInt2D p) { x = p.x; y = p.y; z = 0.0; } public MutableDouble3D(final MutableInt2D p, final double z) { x = p.x; y = p.y; this.z = z; } public MutableDouble3D(final MutableInt3D p) { x = p.x; y = p.y ; z = p.z; } /** Explicitly assumes the z value is set to 0 */ public MutableDouble3D(final Double2D p) { x = p.x; y = p.y; z = 0.0; } public MutableDouble3D(final Double2D p, final double z) { x = p.x; y = p.y; this.z = z; } public MutableDouble3D(final Double3D p) { x=p.x; y=p.y; z=p.z; } /** Explicitly assumes the z value is set to 0 */ public MutableDouble3D(final MutableDouble2D p) { x = p.x; y = p.y; z = 0.0; } public MutableDouble3D(final MutableDouble2D p, final double z) { x = p.x; y = p.y; this.z = z; } public MutableDouble3D(final MutableDouble3D p) { x=p.x; y=p.y; z=p.z; } public MutableDouble3D(final double x, final double y, double z) { this.x = x; this.y = y; this.z = z;} public final double getX() { return x; } public final double getY() { return y; } public final double getZ() { return z; } public final void setX(double val) { x = val; } public final void setY(double val) { y = val; } public final void setZ(double val) { z = val; } public void setTo(double x, double y, double z) { this.x = x; this.y = y; this.z = z; } public void setTo(Int3D p) { x = p.x; y = p.y; z = p.z; } public void setTo(MutableInt3D p) { x = p.x; y = p.y; z = p.z; } public void setTo(Double3D p) { x = p.x; y = p.y; z = p.z; } public void setTo(MutableDouble3D p) { x = p.x; y = p.y; z = p.z; } public String toString() { return "MutableDouble3D["+x+","+y+","+z+"]"; } public String toCoordinates() { return "(" + x + ", " + y + ", " + z + ")"; } public Object clone() { try { return super.clone(); } catch(CloneNotSupportedException e) { return null; // never happens } } public int hashCode() { double x = this.x; double y = this.y; double z = this.z; // push -0.0 to 0.0 for purposes of hashing. Note that equals() has also been modified // to consider -0.0 to be equal to 0.0. Hopefully cute Java compilers won't try to optimize this out. if (x == -0.0) x = 0.0; if (y == -0.0) y = 0.0; if (z == -0.0) z = 0.0; // so we hash to the same value as Int2D does, if we're ints if ((((int)x) == x) && (((int)y) == y) && (((int)z) == z)) // return Int3D.hashCodeFor((int)x,(int)y,(int)z); { int y_ = (int)y; int x_ = (int)x; int z_ = (int)z; // copied from Int3D and inserted here because hashCodeFor can't be // inlined and this saves us a fair chunk on some hash-heavy applications z_ += ~(z_ << 15); z_ ^= (z_ >>> 10); z_ += (z_ << 3); z_ ^= (z_ >>> 6); z_ += ~(z_ << 11); z_ ^= (z_ >>> 16); z_ ^= y_; z_ += 17; // a little prime number shifting -- waving a dead chicken? dunno z_ += ~(z_ << 15); z_ ^= (z_ >>> 10); z_ += (z_ << 3); z_ ^= (z_ >>> 6); z_ += ~(z_ << 11); z_ ^= (z_ >>> 16); // nifty! Now mix in x return x_ ^ z_; } // I don't like Sun's simplistic approach to random shuffling. So... // basically we need to randomly disperse --> int // We do this by doing -> -> long -> int // The first step is done with doubleToLongBits (not RawLongBits; // we want all NaN to hash to the same thing). Then conversion to // a single long is done by hashing (shuffling) z, then xoring it with y, // then hashing that and xoring with x. // I do that as x ^ hash(y ^ hash(z) + 17 [or whatever]). Hash function // taken from http://www.cris.com/~Ttwang/tech/inthash.htm // Some further discussion. Sun's moved to a new hash table scheme // which has (of all things!) tables with lengths that are powers of two! // Normally hash table lengths should be prime numbers, in order to // compensate for bad hashcodes. To fix matters, Sun now is // pre-shuffling the hashcodes with the following algorithm (which // is short but not too bad -- should we adopt it? Dunno). See // http://developer.java.sun.com/developer/bugParade/bugs/4669519.html // key += ~(key << 9); // key ^= (key >>> 14); // key += (key << 4); // key ^= (key >>> 10); // This is good for us because Int2D, Int3D, Double2D, and Double3D // have hashcodes well distributed with regard to y and z, but when // you mix in x, they're just linear in x. We could do a final // shuffle I guess. In Java 1.3, they DON'T do a pre-shuffle, so // it may be suboptimal. Since we're all moving to 1.4.x, it's not // a big deal since 1.4.x is shuffling the final result using the // Sun shuffler above. But I'd appreciate some tests on our method // below, and suggestions as to whether or not we should adopt the // shorter, likely suboptimal but faster Sun shuffler instead // for y and z values. -- Sean long key = Double.doubleToLongBits(z); key += ~(key << 32); key ^= (key >>> 22); key += ~(key << 13); key ^= (key >>> 8); key += (key << 3); key ^= (key >>> 15); key += ~(key << 27); key ^= (key >>> 31); key ^= Double.doubleToLongBits(y); key += 17; // a little prime number shifting -- waving a dead chicken? dunno key += ~(key << 32); key ^= (key >>> 22); key += ~(key << 13); key ^= (key >>> 8); key += (key << 3); key ^= (key >>> 15); key += ~(key << 27); key ^= (key >>> 31); // nifty! Now mix in x key ^= Double.doubleToLongBits(x); // Last we fold on top of each other return (int)(key ^ (key >> 32)); } // can't have separate equals(...) methods as the // argument isn't virtual public boolean equals(final Object obj) { if (obj==null) return false; else if (obj instanceof Double3D) // do Double3D first { Double3D other = (Double3D) obj; // Note: commented out because it can't handle 0.0 == -0.0, grrr return ((x == other.x || (Double.isNaN(x) && Double.isNaN(other.x))) && // they're the same or they're both NaN (y == other.y || (Double.isNaN(y) && Double.isNaN(other.y))) && // they're the same or they're both NaN (z == other.z || (Double.isNaN(z) && Double.isNaN(other.z)))); // they're the same or they're both NaN // can't just do other.x == x && other.y == y && other.z == z because we need to check for NaN // return (Double.doubleToLongBits(other.x) == Double.doubleToLongBits(x) && // Double.doubleToLongBits(other.y) == Double.doubleToLongBits(y) && // Double.doubleToLongBits(other.z) == Double.doubleToLongBits(z)); } else if (obj instanceof MutableDouble3D) { MutableDouble3D other = (MutableDouble3D) obj; // Note: commented out because it can't handle 0.0 == -0.0, grrr return ((x == other.x || (Double.isNaN(x) && Double.isNaN(other.x))) && // they're the same or they're both NaN (y == other.y || (Double.isNaN(y) && Double.isNaN(other.y))) && // they're the same or they're both NaN (z == other.z || (Double.isNaN(z) && Double.isNaN(other.z)))); // they're the same or they're both NaN // can't just do other.x == x && other.y == y && other.z == z because we need to check for NaN // return (Double.doubleToLongBits(other.x) == Double.doubleToLongBits(x) && // Double.doubleToLongBits(other.y) == Double.doubleToLongBits(y) && // Double.doubleToLongBits(other.z) == Double.doubleToLongBits(z)); } else if (obj instanceof Int3D) { Int3D other = (Int3D) obj; return (other.x == x && other.y == y && other.z == z); } else if (obj instanceof MutableInt3D) { MutableInt3D other = (MutableInt3D) obj; return (other.x == x && other.y == y && other.z == z); } else return false; } /** Returns the distance FROM this MutableDouble3D TO the specified point */ public double distance(final double x, final double y, final double z) { final double dx = (double)this.x - x; final double dy = (double)this.y - y; final double dz = (double)this.z - z; return Math.sqrt(dx*dx+dy*dy+dz*dz); } /** Returns the distance FROM this MutableDouble3D TO the specified point. */ public double distance(final Double3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return Math.sqrt(dx*dx+dy*dy+dz*dz); } /** Returns the distance FROM this MutableDouble3D TO the specified point. */ public double distance(final Int3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return Math.sqrt(dx*dx+dy*dy+dz*dz); } /** Returns the distance FROM this MutableDouble3D TO the specified point. */ public double distance(final MutableInt3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return Math.sqrt(dx*dx+dy*dy+dz*dz); } /** Returns the distance FROM this MutableDouble3D TO the specified point. */ public double distance(final MutableDouble3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return Math.sqrt(dx*dx+dy*dy+dz*dz); } /** Returns the squared distance FROM this MutableDouble3D TO the specified point */ public double distanceSq(final double x, final double y, final double z) { final double dx = (double)this.x - x; final double dy = (double)this.y - y; final double dz = (double)this.z - z; return (dx*dx+dy*dy+dz*dz); } /** Returns the squared distance FROM this MutableDouble3D TO the specified point. */ public double distanceSq(final Double3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return (dx*dx+dy*dy+dz*dz); } /** Returns the squared distance FROM this MutableDouble3D TO the specified point. */ public double distanceSq(final Int3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return (dx*dx+dy*dy+dz*dz); } /** Returns the squared distance FROM this MutableDouble3D TO the specified point. */ public double distanceSq(final MutableInt3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return (dx*dx+dy*dy+dz*dz); } /** Returns the squared distance FROM this MutableDouble3D TO the specified point. */ public double distanceSq(final MutableDouble3D p) { final double dx = (double)this.x - p.x; final double dy = (double)this.y - p.y; final double dz = (double)this.z - p.z; return (dx*dx+dy*dy+dz*dz); } /** Returns the manhtattan distance FROM this MutableDouble3D TO the specified point */ public double manhattanDistance(final double x, final double y, final double z) { final double dx = Math.abs((double)this.x - x); final double dy = Math.abs((double)this.y - y); final double dz = Math.abs((double)this.z - z); return dx + dy + dz; } /** Returns the manhtattan distance FROM this MutableDouble3D TO the specified point */ public double manhattanDistance(final Double3D p) { final double dx = Math.abs((double)this.x - p.x); final double dy = Math.abs((double)this.y - p.y); final double dz = Math.abs((double)this.z - p.z); return dx + dy + dz; } /** Returns the manhtattan distance FROM this MutableDouble3D TO the specified point */ public double manhattanDistance(final Int3D p) { final double dx = Math.abs((double)this.x - p.x); final double dy = Math.abs((double)this.y - p.y); final double dz = Math.abs((double)this.z - p.z); return dx + dy + dz; } /** Returns the manhtattan distance FROM this MutableDouble3D TO the specified point */ public double manhattanDistance(final MutableDouble3D p) { final double dx = Math.abs((double)this.x - p.x); final double dy = Math.abs((double)this.y - p.y); final double dz = Math.abs((double)this.z - p.z); return dx + dy + dz; } /** Returns the manhtattan distance FROM this MutableDouble3D TO the specified point */ public double manhattanDistance(final MutableInt3D p) { final double dx = Math.abs((double)this.x - p.x); final double dy = Math.abs((double)this.y - p.y); final double dz = Math.abs((double)this.z - p.z); return dx + dy + dz; } /** Adds other into me, returning me. */ public final MutableDouble3D addIn(final Double3D other) { x = other.x + x; y = other.y + y; z = other.z + z; return this; } /** Adds other into me, returning me. */ public final MutableDouble3D addIn(final MutableDouble3D other) { x = other.x + x; y = other.y + y; z = other.z + z; return this; } /** Sets me to the sum of other1 and other2, returning me. */ public final MutableDouble3D add(final MutableDouble3D other1, final MutableDouble3D other2) { x = other1.x + other2.x; y = other1.y + other2.y; z = other1.z + other2.z; return this; } /** Adds the x, y, and z values into my x, y, and z values, returning me. */ public final MutableDouble3D addIn(final double x, final double y, final double z) { this.x += x; this.y += y; this.z += z; return this; } /** Equivalent to (new MutableDouble3D(d)), but (d.dup()) shorter of course, but perhaps not quite as fast. */ public final MutableDouble3D dup() { return new MutableDouble3D(this); } /** Sets me to me minus other, returning me. */ public final MutableDouble3D subtractIn(Double3D other) { x = x - other.x; y = y - other.y; z = z - other.z; return this; } /** Sets me to me minus other, returning me. */ public final MutableDouble3D subtractIn(MutableDouble3D other) { x = x - other.x; y = y - other.y; z = z - other.z; return this; } /** Subtracts other2 from other1, setting me to the result and returning me. */ public final MutableDouble3D subtract(MutableDouble3D other1, MutableDouble3D other2) { x = other1.x - other2.x; y = other1.y - other2.y; z = other1.z - other2.z; return this; } /** Returns the length of the vector. */ public final double length() { return Math.sqrt(x * x + y * y + z * z); } /** Extends my length so that it is multiplied by val, and returns me. */ public final MutableDouble3D multiplyIn(final double val) { x = x * val; y = y * val; z = z * val; return this; } /** Multiplies other by val, setting me to the result and returning me. */ public final MutableDouble3D multiply(MutableDouble3D other, final double val) { x = other.x * val; y = other.y * val; z = other.z * val; return this; } static final double infinity = 1.0 / 0.0; /** Normalizes me (sets my length to 1.0), returning me. Throws an error if my previous length was of length 0. */ public final MutableDouble3D normalize() { final double invertedlen = 1.0 / Math.sqrt(x * x + y * y + z * z); if (invertedlen == infinity || invertedlen == -infinity || invertedlen == 0 || invertedlen != invertedlen /* nan */) throw new ArithmeticException("" + this + " length is " + Math.sqrt(x * x + y * y + z * z) + ", cannot normalize"); x = x * invertedlen; y = y * invertedlen; z = z * invertedlen; return this; } /** Sets my length, which should be >= 0. @deprecated use resize instead [renaming] */ public final MutableDouble3D setLength(double val) { return resize(val); } /** Sets my length, which should be >= 0. */ public final MutableDouble3D resize(double val) { if (val < 0) throw new IllegalArgumentException("The argument to MutableDouble3D.setLength(...) must be zero or positive"); final double len = Math.sqrt(x * x + y * y + z * z); if (val == 0) x = y = z = 0; else { if (len != len || len == infinity || len == -infinity || len == 0) throw new ArithmeticException("" + this + " length is "+ len + " cannot change its length"); final double invertedlen = val / len; x = x * invertedlen; y = y * invertedlen; z = z * invertedlen; } return this; } /** Returns the dot product of myself against other, that is me DOT other. */ public final double dot(MutableDouble3D other) { return other.x * x + other.y * y + other.z * z; } /** Sets the values to 0. */ public final MutableDouble3D zero() { this.x = 0; this.y = 0; this.z = 0; return this; } /** Sets the values to the negation of the values in the provided MutableDouble3D */ public final MutableDouble3D setToMinus(final MutableDouble3D b) { x = -b.x; y = -b.y; z = -b.z; return this; } /** Negates the MutableDouble3D's values */ public final MutableDouble3D negate() { x = -x; y = -y; z = -z; return this; } /** Returns the square of the length of the MutableDouble3D. */ public final double lengthSq() { return x*x+y*y+z*z; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy