All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.util.distribution.Beta Maven / Gradle / Ivy

Go to download

MASON is a fast discrete-event multiagent simulation library core in Java, designed to be the foundation for large custom-purpose Java simulations, and also to provide more than enough functionality for many lightweight simulation needs. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D.

The newest version!
/*
  Copyright � 1999 CERN - European Organization for Nuclear Research.
  Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
  is hereby granted without fee, provided that the above copyright notice appear in all copies and 
  that both that copyright notice and this permission notice appear in supporting documentation. 
  CERN makes no representations about the suitability of this software for any purpose. 
  It is provided "as is" without expressed or implied warranty.
*/
package sim.util.distribution;
import ec.util.MersenneTwisterFast;

/**
 * Beta distribution;  math definition
 * and  animated definition.
 * 

* p(x) = k * x^(alpha-1) * (1-x)^(beta-1) with k = g(alpha+beta)/(g(alpha)*g(beta)) and g(a) being the gamma function. *

* Valid parameter ranges: alpha > 0 and beta > 0. *

* Instance methods operate on a user supplied uniform random number generator; they are unsynchronized. *

* Static methods operate on a default uniform random number generator; they are synchronized. *

* Implementation: *

Method: Stratified Rejection/Patchwork Rejection. * High performance implementation. *
This is a port of bsprc.c from the C-RAND / WIN-RAND library. * C-RAND's implementation, in turn, is based upon *

* H. Sakasegawa (1983): Stratified rejection and squeeze method for generating beta random numbers, * Ann. Inst. Statist. Math. 35 B, 291-302. *

* and *

* Stadlober E., H. Zechner (1993), Generating beta variates via patchwork rejection,, * Computing 50, 1-18. * * @author [email protected] * @version 1.0, 09/24/99 */ public class Beta extends AbstractContinousDistribution { private static final long serialVersionUID = 1; protected double alpha; protected double beta; double PDF_CONST; // cache to speed up pdf() // cached values shared by bXX double a_last = 0.0, b_last = 0.0; double a_, b_, t, fa, fb, p1, p2; // cached values for b00 double c ; // chached values for b01 double ml, mu; // chached values for b1prs double p_last = 0.0, q_last = 0.0; double a, b, s, m, D, Dl, x1, x2, x4, x5, f1, f2, f4, f5; double ll, lr, z2, z4, p3, p4; /** * Constructs a Beta distribution. */ public Beta(double alpha, double beta, MersenneTwisterFast randomGenerator) { setRandomGenerator(randomGenerator); setState(alpha,beta); } /** * */ protected double b00(double a, double b, MersenneTwisterFast randomGenerator) { double U, V, X, Z; if (a != a_last || b != b_last) { a_last = a; b_last = b; a_ = a - 1.0; b_ = b - 1.0; c = (b * b_) / (a * a_); // b(1-b) / a(1-a) t = (c == 1.0) ? 0.5 : (1.0 - Math.sqrt(c))/(1.0 - c); // t = t_opt fa = Math.exp(a_ * Math.log(t)); fb = Math.exp(b_ * Math.log(1.0 - t)); // f(t) = fa * fb p1 = t/a; // 0 < X < t p2 = (1.0 - t)/b + p1; // t < X < 1 } for (;;) { if ((U = randomGenerator.nextDouble() * p2) <= p1) { // X < t Z = Math.exp(Math.log(U/p1) / a); X = t*Z; // squeeze accept: L(x) = 1 + (1 - b)x if ((V = randomGenerator.nextDouble() * fb) <= 1.0 - b_*X) break; // squeeze reject: U(x) = 1 + ((1 - t)^(b-1) - 1)/t * x if (V <= 1.0 + (fb - 1.0)*Z) { // quotient accept: q(x) = (1 - x)^(b-1) / fb if (Math.log(V) <= b_ * Math.log(1.0 - X)) break; } } else { // X > t Z = Math.exp(Math.log((U-p1)/(p2-p1)) / b); X = 1.0 - (1.0 - t)*Z; // squeeze accept: L(x) = 1 + (1 - a)(1 - x) if ((V = randomGenerator.nextDouble() * fa) <= 1.0 - a_*(1.0 - X)) break; // squeeze reject: U(x) = 1 + (t^(a-1) - 1)/(1 - t) * (1 - x) if (V <= 1.0 + (fa - 1.0)*Z) { // quotient accept: q(x) = x^(a-1) / fa if (Math.log(V) <= a_ * Math.log(X)) break; } } } return(X); } /** * */ protected double b01(double a, double b, MersenneTwisterFast randomGenerator) { double U, V, X, Z; if (a != a_last || b != b_last) { a_last = a; b_last = b; a_ = a - 1.0; b_ = b - 1.0; t = a_/(a - b); // one step Newton * start value t fb = Math.exp((b_ - 1.0) * Math.log(1.0 - t)); fa = a - (a + b_)*t; t -= (t - (1.0 - fa) * (1.0 - t)*fb / b) / (1.0 - fa*fb); fa = Math.exp(a_ * Math.log(t)); fb = Math.exp(b_ * Math.log(1.0 - t)); // f(t) = fa * fb if (b_ <= 1.0) { ml = (1.0 - fb) / t; // ml = -m1 mu = b_ * t; // mu = -m2 * t } else { ml = b_; mu = 1.0 - fb; } p1 = t/a; // 0 < X < t p2 = fb * (1.0 - t)/b + p1; // t < X < 1 } for (;;) { if ((U = randomGenerator.nextDouble() * p2) <= p1) { // X < t Z = Math.exp(Math.log(U/p1) / a); X = t*Z; // squeeze accept: L(x) = 1 + m1*x, ml = -m1 if ((V = randomGenerator.nextDouble() ) <= 1.0 - ml*X) break; // squeeze reject: U(x) = 1 + m2*x, mu = -m2 * t if (V <= 1.0 - mu*Z) { // quotient accept: q(x) = (1 - x)^(b-1) if (Math.log(V) <= b_ * Math.log(1.0 - X)) break; } } else { // X > t Z = Math.exp(Math.log((U-p1)/(p2-p1)) / b); X = 1.0 - (1.0 - t)*Z; // squeeze accept: L(x) = 1 + (1 - a)(1 - x) if ((V = randomGenerator.nextDouble() * fa) <= 1.0 - a_*(1.0 - X)) break; // squeeze reject: U(x) = 1 + (t^(a-1) - 1)/(1 - t) * (1 - x) if (V <= 1.0 + (fa - 1.0)*Z) { // quotient accept: q(x) = (x)^(a-1) / fa if (Math.log(V) <= a_ * Math.log(X)) break; } } } return(X); } /** * */ protected double b1prs(double p, double q, MersenneTwisterFast randomGenerator) { double U, V, W, X, Y; if (p != p_last || q != q_last) { p_last = p; q_last = q; a = p - 1.0; b = q - 1.0; s = a + b; m = a / s; if (a > 1.0 || b > 1.0) D = Math.sqrt(m * (1.0 - m) / (s - 1.0)); if (a <= 1.0) { x2 = (Dl = m * 0.5); x1 = z2 = 0.0; f1 = ll = 0.0; } else { x2 = m - D; x1 = x2 - D; z2 = x2 * (1.0 - (1.0 - x2)/(s * D)); if (x1 <= 0.0 || (s - 6.0) * x2 - a + 3.0 > 0.0) { x1 = z2; x2 = (x1 + m) * 0.5; Dl = m - x2; } else { Dl = D; } f1 = f(x1, a, b, m); ll = x1 * (1.0 - x1) / (s * (m - x1)); // z1 = x1 - ll } f2 = f(x2, a, b, m); if (b <= 1.0) { x4 = 1.0 - (D = (1.0 - m) * 0.5); x5 = z4 = 1.0; f5 = lr = 0.0; } else { x4 = m + D; x5 = x4 + D; z4 = x4 * (1.0 + (1.0 - x4)/(s * D)); if (x5 >= 1.0 || (s - 6.0) * x4 - a + 3.0 < 0.0) { x5 = z4; x4 = (m + x5) * 0.5; D = x4 - m; } f5 = f(x5, a, b, m); lr = x5 * (1.0 - x5) / (s * (x5 - m)); // z5 = x5 + lr } f4 = f(x4, a, b, m); p1 = f2 * (Dl + Dl); // x1 < X < m p2 = f4 * (D + D) + p1; // m < X < x5 p3 = f1 * ll + p2; // X < x1 p4 = f5 * lr + p3; // x5 < X } for (;;) { if ((U = randomGenerator.nextDouble() * p4) <= p1) { // immediate accept: x2 < X < m, - f(x2) < W < 0 if ((W = U/Dl - f2) <= 0.0) return(m - U/f2); // immediate accept: x1 < X < x2, 0 < W < f(x1) if (W <= f1) return(x2 - W/f1 * Dl); // candidates for acceptance-rejection-test V = Dl * (U = randomGenerator.nextDouble()); X = x2 - V; Y = x2 + V; // squeeze accept: L(x) = f(x2) (x - z2) / (x2 - z2) if (W * (x2 - z2) <= f2 * (X - z2)) return(X); if ((V = f2 + f2 - W) < 1.0) { // squeeze accept: L(x) = f(x2) + (1 - f(x2))(x - x2)/(m - x2) if (V <= f2 + (1.0 - f2) * U) return(Y); // quotient accept: x2 < Y < m, W >= 2f2 - f(Y) if (V <= f(Y, a, b, m)) return(Y); } } else if (U <= p2) { U -= p1; // immediate accept: m < X < x4, - f(x4) < W < 0 if ((W = U/D - f4) <= 0.0) return(m + U/f4); // immediate accept: x4 < X < x5, 0 < W < f(x5) if (W <= f5) return(x4 + W/f5 * D); // candidates for acceptance-rejection-test V = D * (U = randomGenerator.nextDouble()); X = x4 + V; Y = x4 - V; // squeeze accept: L(x) = f(x4) (z4 - x) / (z4 - x4) if (W * (z4 - x4) <= f4 * (z4 - X)) return(X); if ((V = f4 + f4 - W) < 1.0) { // squeeze accept: L(x) = f(x4) + (1 - f(x4))(x4 - x)/(x4 - m) if (V <= f4 + (1.0 - f4) * U) return(Y); // quotient accept: m < Y < x4, W >= 2f4 - f(Y) if (V <= f(Y, a, b, m)) return(Y); } } else if (U <= p3) { // X < x1 Y = Math.log(U = (U - p2)/(p3 - p2)); if ((X = x1 + ll * Y) <= 0.0) continue; // X > 0!! W = randomGenerator.nextDouble() * U; // squeeze accept: L(x) = f(x1) (x - z1) / (x1 - z1) // z1 = x1 - ll, W <= 1 + (X - x1)/ll if (W <= 1.0 + Y) return(X); W *= f1; } else { // x5 < X Y = Math.log(U = (U - p3)/(p4 - p3)); if ((X = x5 - lr * Y) >= 1.0) continue; // X < 1!! W = randomGenerator.nextDouble() * U; // squeeze accept: L(x) = f(x5) (z5 - x) / (z5 - x5) // z5 = x5 + lr, W <= 1 + (x5 - X)/lr if (W <= 1.0 + Y) return(X); W *= f5; } // density accept: f(x) = (x/m)^a ((1 - x)/(1 - m))^b if (Math.log(W) <= a*Math.log(X/m) + b*Math.log((1.0 - X)/(1.0 - m))) return(X); } } /** * Returns the cumulative distribution function. */ public double cdf(double x) { return Probability.beta(alpha,beta,x); } private static double f(double x, double a, double b, double m) { return Math.exp(a*Math.log(x/m) + b*Math.log((1.0 - x)/(1.0 - m))); } /** * Returns a random number from the distribution. */ public double nextDouble() { return nextDouble(alpha, beta); } /** * Returns a beta distributed random number; bypasses the internal state. */ public double nextDouble(double alpha, double beta) { /****************************************************************** * * * Beta Distribution - Stratified Rejection/Patchwork Rejection * * * ****************************************************************** * For parameters a < 1 , b < 1 and a < 1 < b or b < 1 < a * * the stratified rejection methods b00 and b01 of Sakasegawa are * * used. Both procedures employ suitable two-part power functions * * from which samples can be obtained by inversion. * * If a > 1 , b > 1 (unimodal case) the patchwork rejection * * method b1prs of Zechner/Stadlober is utilized: * * The area below the density function f(x) in its body is * * rearranged by certain point reflections. Within a large center * * interval variates are sampled efficiently by rejection from * * uniform hats. Rectangular immediate acceptance regions speed * * up the generation. The remaining tails are covered by * * exponential functions. * * If (a-1)(b-1) = 0 sampling is done by inversion if either a * * or b are not equal to one. If a = b = 1 a uniform random * * variate is delivered. * * * ****************************************************************** * * * FUNCTION : - bsprc samples a random variate from the beta * * distribution with parameters a > 0, b > 0. * * REFERENCES : - H. Sakasegawa (1983): Stratified rejection and * * squeeze method for generating beta random * * numbers, Ann. Inst. Statist. Math. 35 B, * * 291-302. * * - H. Zechner, E. Stadlober (1993): Generating * * beta variates via patchwork rejection, * * Computing 50, 1-18. * * * * SUBPROGRAMS: - drand(seed) ... (0,1)-Uniform generator with * * unsigned long integer *seed. * * - b00(seed,a,b) ... Beta generator for a<1, b<1 * * - b01(seed,a,b) ... Beta generator for a<11, b>1 * * with unsigned long integer *seed, double a, b. * * * ******************************************************************/ double a = alpha; double b = beta; if (a > 1.0) { if (b > 1.0) return(b1prs(a, b, randomGenerator)); if (b < 1.0) return(1.0 - b01(b, a, randomGenerator)); if (b == 1.0) { return(Math.exp(Math.log( randomGenerator.nextDouble()) / a)); } } if (a < 1.0) { if (b > 1.0) return(b01(a, b, randomGenerator)); if (b < 1.0) return(b00(a, b, randomGenerator)); if (b == 1.0) { return(Math.exp(Math.log(randomGenerator.nextDouble()) / a)); } } if (a == 1.0) { if (b != 1.0) return(1.0 - Math.exp(Math.log(randomGenerator.nextDouble()) / b)); if (b == 1.0) return(randomGenerator.nextDouble()); } return 0.0; } /** * Returns the cumulative distribution function. */ public double pdf(double x) { if (x < 0 || x > 1) return 0.0 ; return Math.exp(PDF_CONST) * Math.pow(x, alpha-1) * Math.pow(1-x, beta-1); } /** * Sets the parameters. */ public void setState(double alpha, double beta) { this.alpha = alpha; this.beta = beta; this.PDF_CONST = Fun.logGamma(alpha+beta) - Fun.logGamma(alpha) - Fun.logGamma(beta); } /** * Returns a String representation of the receiver. */ public String toString() { return this.getClass().getName()+"("+alpha+","+beta+")"; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy