All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.util.distribution.Binomial Maven / Gradle / Ivy

Go to download

MASON is a fast discrete-event multiagent simulation library core in Java, designed to be the foundation for large custom-purpose Java simulations, and also to provide more than enough functionality for many lightweight simulation needs. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D.

The newest version!
/*
  Copyright � 1999 CERN - European Organization for Nuclear Research.
  Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
  is hereby granted without fee, provided that the above copyright notice appear in all copies and 
  that both that copyright notice and this permission notice appear in supporting documentation. 
  CERN makes no representations about the suitability of this software for any purpose. 
  It is provided "as is" without expressed or implied warranty.
*/
package sim.util.distribution;
import ec.util.MersenneTwisterFast;

/**
 * Binomial distribution; See the  math definition
 * and  animated definition.
 * 

* p(x) = k * p^k * (1-p)^(n-k) with k = n! / (k! * (n-k)!). *

* Instance methods operate on a user supplied uniform random number generator; they are unsynchronized. *

* Static methods operate on a default uniform random number generator; they are synchronized. *

* Implementation: High performance implementation. Acceptance Rejection/Inversion method. * This is a port of RandBinomial used in CLHEP 1.4.0 (C++). * CLHEP's implementation is, in turn, based on *

V. Kachitvichyanukul, B.W. Schmeiser (1988): Binomial random variate generation, Communications of the ACM 31, 216-222. * * @author [email protected] * @version 1.0, 09/24/99 */ public class Binomial extends AbstractDiscreteDistribution { private static final long serialVersionUID = 1; protected int n; protected double p; // cache vars for method generateBinomial(...) private int n_last = -1, n_prev = -1; private double par,np,p0,q,p_last = -1.0, p_prev = -1.0; private int b,m,nm; private double pq, rc, ss, xm, xl, xr, ll, lr, c, p1, p2, p3, p4, ch; // cache vars for method pdf(...) private double log_p, log_q, log_n; /** * Constructs a binomial distribution. * Example: n=1, p=0.5. * @param n the number of trials (also known as sample size). * @param p the probability of success. * @param randomGenerator a uniform random number generator. * @throws IllegalArgumentException if n*Math.min(p,1-p) <= 0.0 */ public Binomial(int n, double p, MersenneTwisterFast randomGenerator) { setRandomGenerator(randomGenerator); setNandP(n,p); } /** * Returns the cumulative distribution function. */ public double cdf(int k) { return Probability.binomial(k,n,p); } /** * Returns the cumulative distribution function. */ private double cdfSlow(int k) { if (k < 0) throw new IllegalArgumentException(); double sum = 0.0; for (int r = 0; r<=k; r++) sum += pdf(r); return sum; } /****************************************************************** * * * Binomial-Distribution - Acceptance Rejection/Inversion * * * ****************************************************************** * * * Acceptance Rejection method combined with Inversion for * * generating Binomial random numbers with parameters * * n (number of trials) and p (probability of success). * * For min(n*p,n*(1-p)) < 10 the Inversion method is applied: * * The random numbers are generated via sequential search, * * starting at the lowest index k=0. The cumulative probabilities * * are avoided by using the technique of chop-down. * * For min(n*p,n*(1-p)) >= 10 Acceptance Rejection is used: * * The algorithm is based on a hat-function which is uniform in * * the centre region and exponential in the tails. * * A triangular immediate acceptance region in the centre speeds * * up the generation of binomial variates. * * If candidate k is near the mode, f(k) is computed recursively * * starting at the mode m. * * The acceptance test by Stirling's formula is modified * * according to W. Hoermann (1992): The generation of binomial * * random variates, to appear in J. Statist. Comput. Simul. * * If p < .5 the algorithm is applied to parameters n, p. * * Otherwise p is replaced by 1-p, and k is replaced by n - k. * * * ****************************************************************** * * * FUNCTION: - samples a random number from the binomial * * distribution with parameters n and p and is * * valid for n*min(p,1-p) > 0. * * REFERENCE: - V. Kachitvichyanukul, B.W. Schmeiser (1988): * * Binomial random variate generation, * * Communications of the ACM 31, 216-222. * * SUBPROGRAMS: - StirlingCorrection() * * ... Correction term of the Stirling * * approximation for log(k!) * * (series in 1/k or table values * * for small k) with long int k * * - randomGenerator ... (0,1)-Uniform engine * * * ******************************************************************/ protected int generateBinomial(int n, double p) { final double C1_3 = 0.33333333333333333; final double C5_8 = 0.62500000000000000; final double C1_6 = 0.16666666666666667; final int DMAX_KM = 20; int bh,i, K, Km, nK; double f, rm, U, V, X, T, E; if (n != n_last || p != p_last) { // set-up n_last = n; p_last = p; par=Math.min(p,1.0-p); q=1.0-par; np = n*par; // Check for invalid input values if( np <= 0.0 ) return -1; rm = np + par; m = (int) rm; // mode, integer if (np<10) { p0=Math.exp(n*Math.log(q)); // Chop-down bh=(int)(np+10.0*Math.sqrt(np*q)); b=Math.min(n,bh); } else { rc = (n + 1.0) * (pq = par / q); // recurr. relat. ss = np * q; // variance i = (int) (2.195*Math.sqrt(ss) - 4.6*q); // i = p1 - 0.5 xm = m + 0.5; xl = (double) (m - i); // limit left xr = (double) (m + i + 1L); // limit right f = (rm - xl) / (rm - xl*par); ll = f * (1.0 + 0.5*f); f = (xr - rm) / (xr * q); lr = f * (1.0 + 0.5*f); c = 0.134 + 20.5/(15.3 + (double) m); // parallelogram // height p1 = i + 0.5; p2 = p1 * (1.0 + c + c); // probabilities p3 = p2 + c/ll; // of regions 1-4 p4 = p3 + c/lr; } } if (np<10) { //Inversion Chop-down double pk; K=0; pk=p0; U=randomGenerator.nextDouble(); while (U>pk) { ++K; if (K>b) { U=randomGenerator.nextDouble(); K=0; pk=p0; } else { U-=pk; pk=(double)(((n-K+1)*par*pk)/(K*q)); } } return ((p>0.5) ? (n-K):K); } for (;;) { V = randomGenerator.nextDouble(); if ((U = randomGenerator.nextDouble() * p4) <= p1) { // triangular region K=(int) (xm - U + p1*V); return (p>0.5) ? (n-K):K; // immediate accept } if (U <= p2) { // parallelogram X = xl + (U - p1)/c; if ((V = V*c + 1.0 - Math.abs(xm - X)/p1) >= 1.0) continue; K = (int) X; } else if (U <= p3) { // left tail if ((X = xl + Math.log(V)/ll) < 0.0) continue; K = (int) X; V *= (U - p2) * ll; } else { // right tail if ((K = (int) (xr - Math.log(V)/lr)) > n) continue; V *= (U - p3) * lr; } // acceptance test : two cases, depending on |K - m| if ((Km = Math.abs(K - m)) <= DMAX_KM || Km + Km + 2L >= ss) { // computation of p(K) via recurrence relationship from the mode f = 1.0; // f(m) if (m < K) { for (i = m; i < K; ) { if ((f *= (rc / ++i - pq)) < V) break; // multiply f } } else { for (i = K; i < m; ) { if ((V *= (rc / ++i - pq)) > f) break; // multiply V } } if (V <= f) break; // acceptance test } else { // lower and upper squeeze tests, based on lower bounds for log p(K) V = Math.log(V); T = - Km * Km / (ss + ss); E = (Km / ss) * ((Km * (Km * C1_3 + C5_8) + C1_6) / ss + 0.5); if (V <= T - E) break; if (V <= T + E) { if (n != n_prev || par != p_prev) { n_prev = n; p_prev = par; nm = n - m + 1; ch = xm * Math.log((m + 1.0)/(pq * nm)) + Arithmetic.stirlingCorrection(m + 1) + Arithmetic.stirlingCorrection(nm); } nK = n - K + 1; // computation of log f(K) via Stirling's formula // final acceptance-rejection test if (V <= ch + (n + 1.0)*Math.log((double) nm / (double) nK) + (K + 0.5)*Math.log(nK * pq / (K + 1.0)) - Arithmetic.stirlingCorrection(K + 1) - Arithmetic.stirlingCorrection(nK)) break; } } } return (p>0.5) ? (n-K):K; } /** * Returns a random number from the distribution. */ public int nextInt() { return generateBinomial(n,p); } /** * Returns a random number from the distribution with the given parameters n and p; bypasses the internal state. * @param n the number of trials * @param p the probability of success. * @throws IllegalArgumentException if n*Math.min(p,1-p) <= 0.0 */ public int nextInt(int n, double p) { if (n*Math.min(p,1-p) <= 0.0) throw new IllegalArgumentException(); return generateBinomial(n,p); } /** * Returns the probability distribution function. */ public double pdf(int k) { if (k < 0) throw new IllegalArgumentException(); int r = this.n - k; return Math.exp(this.log_n - Arithmetic.logFactorial(k) - Arithmetic.logFactorial(r) + this.log_p * k + this.log_q * r); } /** * Sets the parameters number of trials and the probability of success. * @param n the number of trials * @param p the probability of success. * @throws IllegalArgumentException if n*Math.min(p,1-p) <= 0.0 */ public void setNandP(int n, double p) { if (n*Math.min(p,1-p) <= 0.0) throw new IllegalArgumentException(); this.n = n; this.p = p; this.log_p = Math.log(p); this.log_q = Math.log(1.0-p); this.log_n = Arithmetic.logFactorial(n); } /** * Returns a String representation of the receiver. */ public String toString() { return this.getClass().getName()+"("+n+","+p+")"; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy