All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.util.distribution.Distributions Maven / Gradle / Ivy

Go to download

MASON is a fast discrete-event multiagent simulation library core in Java, designed to be the foundation for large custom-purpose Java simulations, and also to provide more than enough functionality for many lightweight simulation needs. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D.

The newest version!
/*
  Copyright � 1999 CERN - European Organization for Nuclear Research.
  Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
  is hereby granted without fee, provided that the above copyright notice appear in all copies and 
  that both that copyright notice and this permission notice appear in supporting documentation. 
  CERN makes no representations about the suitability of this software for any purpose. 
  It is provided "as is" without expressed or implied warranty.
*/
package sim.util.distribution;
import ec.util.MersenneTwisterFast;

/**
 * Contains methods for conveniently generating pseudo-random numbers from special distributions such as the Burr, Cauchy, Erlang, Geometric, Lambda, Laplace, Logistic, Weibull, etc.
 * 

* About this class: *

All distributions are obtained by using a uniform pseudo-random number generator. * followed by a transformation to the desired distribution. *

* Example usage:

 * cern.jet.random.engine.MersenneTwisterFast generator;
 * generator = new cern.jet.random.engine.MersenneTwister(new java.util.Date());
 * //generator = new edu.cornell.lassp.houle.RngPack.Ranecu(new java.util.Date());
 * //generator = new edu.cornell.lassp.houle.RngPack.Ranmar(new java.util.Date());
 * //generator = new edu.cornell.lassp.houle.RngPack.Ranlux(new java.util.Date());
 * //generator = AbstractDistribution.makeDefaultGenerator();
 * for (int i=1000000; --i >=0; ) {
 *    int cauchy = Distributions.nextCauchy(generator);
 *    ...
 * }
 * 
* * @see cern.jet.random.engine.MersenneTwister * @see java.util.Random * @see java.lang.Math * @author [email protected] * @version 1.0, 09/24/99 */ public class Distributions implements java.io.Serializable { private static final long serialVersionUID = 1; /** * Makes this class non instantiable, but still let's others inherit from it. */ protected Distributions() { throw new RuntimeException("Non instantiable"); } /** * Returns the probability distribution function of the discrete geometric distribution. *

* p(k) = p * (1-p)^k for k >= 0. *

* @param k the argument to the probability distribution function. * @param p the parameter of the probability distribution function. */ public static double geometricPdf(int k, double p) { if (k<0) throw new IllegalArgumentException(); return p * Math.pow(1-p,k); } /** * Returns a random number from the Burr II, VII, VIII, X Distributions. *

* Implementation: Inversion method. * This is a port of burr1.c from the C-RAND / WIN-RAND library. * C-RAND's implementation, in turn, is based upon *

* L. Devroye (1986): Non-Uniform Random Variate Generation, Springer Verlag, New York. *

* @param r must be > 0. * @param nr the number of the burr distribution (e.g. 2,7,8,10). */ public static double nextBurr1(double r, int nr, MersenneTwisterFast randomGenerator) { /****************************************************************** * * * Burr II, VII, VIII, X Distributions - Inversion * * * ****************************************************************** * * * FUNCTION : - burr1 samples a random number from one of the * * Burr II, VII, VIII, X distributions with * * parameter r > 0 , where the no. of the * * distribution is indicated by a pointer * * variable. * * REFERENCE : - L. Devroye (1986): Non-Uniform Random Variate * * Generation, Springer Verlag, New York. * * SUBPROGRAM : - drand(seed) ... (0,1)-uniform generator with * * unsigned long integer *seed. * * * ******************************************************************/ double y; y=Math.exp(Math.log(randomGenerator.nextDouble())/r); /* y=u^(1/r) */ switch (nr) { // BURR II case 2 : return(-Math.log(1/y-1)); // BURR VII case 7 : return(Math.log(2*y/(2-2*y))/2); // BURR VIII case 8 : return(Math.log(Math.tan(y*Math.PI/2.0))); // BURR X case 10 : return(Math.sqrt(-Math.log(1-y))); } return 0; } /** * Returns a random number from the Burr III, IV, V, VI, IX, XII distributions. *

* Implementation: Inversion method. * This is a port of burr2.c from the C-RAND / WIN-RAND library. * C-RAND's implementation, in turn, is based upon *

* L. Devroye (1986): Non-Uniform Random Variate Generation, Springer Verlag, New York. *

* @param r must be > 0. * @param k must be > 0. * @param nr the number of the burr distribution (e.g. 3,4,5,6,9,12). */ public static double nextBurr2(double r, double k, int nr, MersenneTwisterFast randomGenerator) { /****************************************************************** * * * Burr III, IV, V, VI, IX, XII Distribution - Inversion * * * ****************************************************************** * * * FUNCTION : - burr2 samples a random number from one of the * * Burr III, IV, V, VI, IX, XII distributions with * * parameters r > 0 and k > 0, where the no. of * * the distribution is indicated by a pointer * * variable. * * REFERENCE : - L. Devroye (1986): Non-Uniform Random Variate * * Generation, Springer Verlag, New York. * * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with * * unsigned long integer *seed. * * * ******************************************************************/ double y,u; u = randomGenerator.nextDouble(); // U(0/1) y = Math.exp(-Math.log(u)/r)-1.0; // u^(-1/r) - 1 switch (nr) { case 3 : // BURR III return(Math.exp(-Math.log(y)/k)); // y^(-1/k) case 4 : // BURR IV y=Math.exp(k*Math.log(y))+1.0; // y^k + 1 y=k/y; return(y); case 5 : // BURR V y=Math.atan(-Math.log(y/k)); // arctan[log(y/k)] return(y); case 6 : // BURR VI y=-Math.log(y/k)/r; y=Math.log(y+Math.sqrt(y*y +1.0)); return(y); case 9 : // BURR IX y=1.0+2.0*u/(k*(1.0-u)); y=Math.exp(Math.log(y)/r)-1.0; // y^(1/r) -1 return Math.log(y); case 12 : // BURR XII return Math.exp(Math.log(y)/k); // y^(1/k) } return 0; } /** * Returns a cauchy distributed random number from the standard Cauchy distribution C(0,1). * math definition * and animated definition. *

* p(x) = 1/ (mean*pi * (1+(x/mean)^2)). *

* Implementation: * This is a port of cin.c from the C-RAND / WIN-RAND library. *

* @returns a number in the open unit interval (0.0,1.0) (excluding 0.0 and 1.0). */ public static double nextCauchy(MersenneTwisterFast randomGenerator) { return Math.tan(Math.PI*randomGenerator.nextDouble()); } /** * Returns an erlang distributed random number with the given variance and mean. */ public static double nextErlang(double variance, double mean, MersenneTwisterFast randomGenerator) { int k = (int)( (mean * mean ) / variance + 0.5 ); k = (k > 0) ? k : 1; double a = k / mean; double prod = 1.0; for (int i = 0; i < k; i++) prod *= randomGenerator.nextDouble(); return -Math.log(prod)/a; } /** * Returns a discrete geometric distributed random number; Definition. *

* p(k) = p * (1-p)^k for k >= 0. *

* Implementation: Inversion method. * This is a port of geo.c from the C-RAND / WIN-RAND library. * @param p must satisfy 0 < p < 1. *

*/ public static int nextGeometric(double p, MersenneTwisterFast randomGenerator) { /****************************************************************** * * * Geometric Distribution - Inversion * * * ****************************************************************** * * * On generating random numbers of a discrete distribution by * * Inversion normally sequential search is necessary, but in the * * case of the Geometric distribution a direct transformation is * * possible because of the special parallel to the continuous * * Exponential distribution Exp(t): * * X - Exp(t): G(x)=1-exp(-tx) * * Geo(p): pk=G(k+1)-G(k)=exp(-tk)*(1-exp(-t)) * * p=1-exp(-t) * * A random number of the Geometric distribution Geo(p) is * * obtained by k=(long int)x, where x is from Exp(t) with * * parameter t=-log(1-p). * * * ****************************************************************** * * * FUNCTION: - geo samples a random number from the Geometric * * distribution with parameter 0 * Implementation: Inversion method. * This is a port of lamin.c from the C-RAND / WIN-RAND library. * C-RAND's implementation, in turn, is based upon *

* J.S. Ramberg, B:W. Schmeiser (1974): An approximate method for generating asymmetric variables, Communications ACM 17, 78-82. *

*/ public static double nextLambda(double l3, double l4, MersenneTwisterFast randomGenerator) { double l_sign; if ((l3<0) || (l4<0)) l_sign=-1.0; // sign(l) else l_sign=1.0; double u = randomGenerator.nextDouble(); // U(0/1) double x = l_sign*(Math.exp(Math.log(u)*l3) - Math.exp(Math.log(1.0 - u)*l4)); return x; } /** * Returns a Laplace (Double Exponential) distributed random number from the standard Laplace distribution L(0,1). *

* Implementation: Inversion method. * This is a port of lapin.c from the C-RAND / WIN-RAND library. *

* @returns a number in the open unit interval (0.0,1.0) (excluding 0.0 and 1.0). */ public static double nextLaplace(MersenneTwisterFast randomGenerator) { double u = randomGenerator.nextDouble(); u = u+u-1.0; if (u>0) return -Math.log(1.0-u); else return Math.log(1.0+u); } /** * Returns a random number from the standard Logistic distribution Log(0,1). *

* Implementation: Inversion method. * This is a port of login.c from the C-RAND / WIN-RAND library. */ public static double nextLogistic(MersenneTwisterFast randomGenerator) { double u = randomGenerator.nextDouble(); return(-Math.log(1.0 / u-1.0)); } /** * Returns a power-law distributed random number with the given exponent and lower cutoff. * @param alpha the exponent * @param cut the lower cutoff */ public static double nextPowLaw(double alpha, double cut, MersenneTwisterFast randomGenerator) { return cut*Math.pow(randomGenerator.nextDouble(), 1.0/(alpha+1.0) ) ; } /** * Returns a random number from the standard Triangular distribution in (-1,1). *

* Implementation: Inversion method. * This is a port of tra.c from the C-RAND / WIN-RAND library. *

*/ public static double nextTriangular(MersenneTwisterFast randomGenerator) { /****************************************************************** * * * Triangular Distribution - Inversion: x = +-(1-sqrt(u)) * * * ****************************************************************** * * * FUNCTION : - tra samples a random number from the * * standard Triangular distribution in (-1,1) * * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with * * unsigned long integer *seed. * * * ******************************************************************/ double u; u=randomGenerator.nextDouble(); if (u<=0.5) return(Math.sqrt(2.0*u)-1.0); /* -1 <= x <= 0 */ else return(1.0-Math.sqrt(2.0*(1.0-u))); /* 0 <= x <= 1 */ } /** * Returns a weibull distributed random number. * Polar method. * See Simulation, Modelling & Analysis by Law & Kelton, pp259 */ public static double nextWeibull(double alpha, double beta, MersenneTwisterFast randomGenerator) { // Polar method. // See Simulation, Modelling & Analysis by Law & Kelton, pp259 return Math.pow(beta * ( - Math.log(1.0 - randomGenerator.nextDouble()) ), 1.0 / alpha); } /** * Returns a zipfian distributed random number with the given skew. *

* Algorithm from page 551 of: * Devroye, Luc (1986) `Non-uniform random variate generation', * Springer-Verlag: Berlin. ISBN 3-540-96305-7 (also 0-387-96305-7) * * @param z the skew of the distribution (must be >1.0). * @returns a zipfian distributed number in the closed interval [1,Integer.MAX_VALUE]. */ public static int nextZipfInt(double z, MersenneTwisterFast randomGenerator) { /* Algorithm from page 551 of: * Devroye, Luc (1986) `Non-uniform random variate generation', * Springer-Verlag: Berlin. ISBN 3-540-96305-7 (also 0-387-96305-7) */ final double b = Math.pow(2.0,z-1.0); final double constant = -1.0/(z-1.0); int result=0; for (;;) { double u = randomGenerator.nextDouble(); double v = randomGenerator.nextDouble(); result = (int) (Math.floor(Math.pow(u,constant))); double t = Math.pow(1.0 + 1.0/result, z-1.0); if (v*result*(t-1.0)/(b-1.0) <= t/b) break; } return result; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy