All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.util.distribution.Fun Maven / Gradle / Ivy

Go to download

MASON is a fast discrete-event multiagent simulation library core in Java, designed to be the foundation for large custom-purpose Java simulations, and also to provide more than enough functionality for many lightweight simulation needs. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D.

The newest version!
/*
  Copyright � 1999 CERN - European Organization for Nuclear Research.
  Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
  is hereby granted without fee, provided that the above copyright notice appear in all copies and 
  that both that copyright notice and this permission notice appear in supporting documentation. 
  CERN makes no representations about the suitability of this software for any purpose. 
  It is provided "as is" without expressed or implied warranty.
*/
package sim.util.distribution;
import ec.util.MersenneTwisterFast;

/**
 * Contains various mathematical helper methods.
 *
 * Implementation: High performance implementation.
 * 
This is a port of gen_fun.cpp from the C-RAND / WIN-RAND library. * * @author [email protected] * @version 1.0, 09/24/99 */ class Fun implements java.io.Serializable { private static final long serialVersionUID = 1; /** * Makes this class non instantiable, but still let's others inherit from it. */ protected Fun() { throw new RuntimeException("Non instantiable"); } private static double _fkt_value(double lambda, double z1, double z2, double x_value) { double y_value; y_value = Math.cos(z1*x_value)/(Math.pow((x_value*x_value + z2*z2),(lambda + 0.5))); return y_value; } public static double bessel2_fkt(double lambda, double beta) { final double pi = Math.PI; double sum,x,step,x1,first_value,new_value; double epsilon = 0.01; double y,fx,z1,z2,erg; double period,border,first_sum,second_sum; double my,c,prod=0.0,diff,value; int i,j,nr_per; final double b0[] = { -1.5787132, -0.6130827, 0.1735823, 1.4793411, 2.6667307, 4.9086836, 8.1355339, }; final double b05[] = { -1.9694802, -0.7642538, 0.0826017, 1.4276355, 2.6303682, 4.8857787, 8.1207968, }; final double b1[] = { -2.9807345, -1.1969943, -0.1843161, 1.2739241, 2.5218256, 4.8172216, 8.0765633, }; final double b2[] = { -5.9889676, -2.7145389, -1.1781269, 0.6782201, 2.0954009, 4.5452152, 7.9003173, }; final double b3[] = { -9.6803440, -4.8211925, -2.6533185, -0.2583337, 1.4091915, 4.0993448, 7.6088310, }; final double b5[] = {-18.1567152,-10.0939408, -6.5819139, -2.9371545, -0.6289005, 2.7270412, 6.6936799, }; final double b8[] = {-32.4910195,-19.6065943,-14.0347298, -8.3839439, -4.9679730, -0.3567823, 4.5589697, }; if (lambda == 0.0) { if (beta == 0.1) return(b0[0]); if (beta == 0.5) return(b0[1]); if (beta == 1.0) return(b0[2]); if (beta == 2.0) return(b0[3]); if (beta == 3.0) return(b0[4]); if (beta == 5.0) return(b0[5]); if (beta == 8.0) return(b0[6]); } if (lambda == 0.5) { if (beta == 0.1) return(b05[0]); if (beta == 0.5) return(b05[1]); if (beta == 1.0) return(b05[2]); if (beta == 2.0) return(b05[3]); if (beta == 3.0) return(b05[4]); if (beta == 5.0) return(b05[5]); if (beta == 8.0) return(b05[6]); } if (lambda == 1.0) { if (beta == 0.1) return(b1[0]); if (beta == 0.5) return(b1[1]); if (beta == 1.0) return(b1[2]); if (beta == 2.0) return(b1[3]); if (beta == 3.0) return(b1[4]); if (beta == 5.0) return(b1[5]); if (beta == 8.0) return(b1[6]); } if (lambda == 2.0) { if (beta == 0.1) return(b2[0]); if (beta == 0.5) return(b2[1]); if (beta == 1.0) return(b2[2]); if (beta == 2.0) return(b2[3]); if (beta == 3.0) return(b2[4]); if (beta == 5.0) return(b2[5]); if (beta == 8.0) return(b2[6]); } if (lambda == 3.0) { if (beta == 0.1) return(b3[0]); if (beta == 0.5) return(b3[1]); if (beta == 1.0) return(b3[2]); if (beta == 2.0) return(b3[3]); if (beta == 3.0) return(b3[4]); if (beta == 5.0) return(b3[5]); if (beta == 8.0) return(b3[6]); } if (lambda == 5.0) { if (beta == 0.1) return(b5[0]); if (beta == 0.5) return(b5[1]); if (beta == 1.0) return(b5[2]); if (beta == 2.0) return(b5[3]); if (beta == 3.0) return(b5[4]); if (beta == 5.0) return(b5[5]); if (beta == 8.0) return(b5[6]); } if (lambda == 8.0) { if (beta == 0.1) return(b8[0]); if (beta == 0.5) return(b8[1]); if (beta == 1.0) return(b8[2]); if (beta == 2.0) return(b8[3]); if (beta == 3.0) return(b8[4]); if (beta == 5.0) return(b8[5]); if (beta == 8.0) return(b8[6]); } if ((beta - 5.0*lambda - 8.0) >= 0.0) { my = 4.0*lambda*lambda; c = -0.9189385 + 0.5*Math.log(beta) + beta; sum = 1.0; value = 1.0; diff = 8.0; i = 1; for (;;) { //while (!NULL) { if ((factorial(i)*Math.pow((8.0*beta),i)) > 1.0e250) break; if (i > 10) break; if (i == 1) prod = my - 1.0; else { value += diff; prod = prod*(my - value); diff *= 2.0; } sum =sum + prod/(factorial(i)*Math.pow((8.0*beta),i)); i++; } erg = c - Math.log(sum); return(erg); } if ((lambda > 0.0) && ((beta - 0.04*lambda) <= 0.0)) { if (lambda < 11.5) { erg = -Math.log(gamma(lambda)) - lambda*Math.log(2.0) + lambda*Math.log(beta); return(erg); } else { erg = -(lambda + 1.0)*Math.log(2.0) - (lambda - 0.5)*Math.log(lambda) + lambda + lambda*Math.log(beta) - 0.5*Math.log(0.5*pi); return(erg); } } // otherwise numerical integration of the function defined above x = 0.0; if (beta < 1.57) { fx = (fkt2_value(lambda,beta,x))*0.01; y = 0.0; for (;;) { //while (!NULL) { y += 0.1; if ((fkt2_value(lambda,beta,y)) < fx) break; } step = y*0.001; x1 = step; sum = (0.5*(10.0*step + fkt2_value(lambda,beta,x1)))*step; first_value = sum; for (;;) { //while (!NULL) { x = x1; x1 += step; new_value = (0.5*(fkt2_value(lambda,beta,x) + fkt2_value(lambda,beta,x1)))*step; sum += new_value; if ((new_value/first_value) < epsilon) break; } erg = -Math.log(2.0*sum); return(erg); } else { z2 = 1.57; z1 = beta/1.57; sum = 0.0; period = pi/z1; step = 0.1*period; border = 100.0/((lambda + 0.1)*(lambda + 0.1)); nr_per = (int) Math.ceil((border/period)) + 20; x1 = step; for (i = 1; i <= nr_per; i++) { for (j = 1; j <= 10; j++) { new_value = (0.5*(_fkt_value(lambda,z1,z2,x) + _fkt_value(lambda,z1,z2,x1)))*step; sum += new_value; x = x1; x1 += step; } } for (j = 1; j <= 5; j++) { new_value = (0.5*(_fkt_value(lambda,z1,z2,x) + _fkt_value(lambda,z1,z2,x1)))*step; sum += new_value; x = x1; x1 += step; } first_sum = sum; for (j = 1; j <= 10; j++) { new_value = (0.5*(_fkt_value(lambda,z1,z2,x) + _fkt_value(lambda,z1,z2,x1)))*step; sum += new_value; x = x1; x1 += step; } second_sum = sum; sum = 0.5*(first_sum + second_sum); erg = gamma(lambda + 0.5)*Math.pow((2.0*z2),lambda)/(Math.sqrt(pi)*Math.pow(z1,lambda))*sum; erg = -Math.log(2.0*erg); return(erg); } } /** * Modified Bessel Functions of First Kind - Order 0. */ public static double bessi0(double x) { double ax,ans; double y; if ((ax=Math.abs(x)) < 3.75) { y=x/3.75; y*=y; ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492 +y*(0.2659732+y*(0.360768e-1+y*0.45813e-2))))); } else { y=3.75/ax; ans=(Math.exp(ax)/Math.sqrt(ax))*(0.39894228+y*(0.1328592e-1 +y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2 +y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1 +y*0.392377e-2)))))))); } return ans; } /** * Modified Bessel Functions of First Kind - Order 1. */ public static double bessi1(double x) { double ax,ans; double y; if ((ax=Math.abs(x)) < 3.75) { y=x/3.75; y*=y; ans=ax*(0.5+y*(0.87890594+y*(0.51498869+y*(0.15084934 +y*(0.2658733e-1+y*(0.301532e-2+y*0.32411e-3)))))); } else { y=3.75/ax; ans=0.2282967e-1+y*(-0.2895312e-1+y*(0.1787654e-1 -y*0.420059e-2)); ans=0.39894228+y*(-0.3988024e-1+y*(-0.362018e-2 +y*(0.163801e-2+y*(-0.1031555e-1+y*ans)))); ans *= (Math.exp(ax)/Math.sqrt(ax)); } return x < 0.0 ? -ans : ans; } /** * Returns n!. */ public static long factorial(int n) { return Arithmetic.longFactorial(n); /* long i,prod; prod = 1; if (n != 0) { for (i = 2; i <= n; i++) prod *= i; } return prod; */ } private static double fkt2_value(double lambda, double beta, double x_value) { double y_value; y_value = cosh(lambda*x_value)*Math.exp(-beta*cosh(x_value)); return y_value; } private static double cosh(double x) { return (Math.exp(x) + Math.exp(-x)) / 2.0; } /** * Returns the gamma function gamma(x). */ public static double gamma(double x) { x = logGamma(x); //if (x > Math.log(Double.MAX_VALUE)) return Double.MAX_VALUE; return Math.exp(x); } /** * Returns a quick approximation of log(gamma(x)). */ public static double logGamma(double x) { final double c0 = 9.1893853320467274e-01, c1 = 8.3333333333333333e-02, c2 =-2.7777777777777777e-03, c3 = 7.9365079365079365e-04, c4 =-5.9523809523809524e-04, c5 = 8.4175084175084175e-04, c6 =-1.9175269175269175e-03; double g,r,z; if (x <= 0.0 /* || x > 1.3e19 */ ) return -999; for (z = 1.0; x < 11.0; x++) z *= x; r = 1.0 / (x * x); g = c1 + r * (c2 + r * (c3 + r * (c4 + r * (c5 + r + c6)))); g = (x - 0.5) * Math.log(x) - x + c0 + g / x; if (z == 1.0) return g; return g - Math.log(z); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy