All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.util.distribution.Poisson Maven / Gradle / Ivy

Go to download

MASON is a fast discrete-event multiagent simulation library core in Java, designed to be the foundation for large custom-purpose Java simulations, and also to provide more than enough functionality for many lightweight simulation needs. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D.

The newest version!
/*
  Copyright � 1999 CERN - European Organization for Nuclear Research.
  Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
  is hereby granted without fee, provided that the above copyright notice appear in all copies and 
  that both that copyright notice and this permission notice appear in supporting documentation. 
  CERN makes no representations about the suitability of this software for any purpose. 
  It is provided "as is" without expressed or implied warranty.
*/
package sim.util.distribution;
import ec.util.MersenneTwisterFast;

/**
 * Poisson distribution (quick); See the  math definition
 * and  animated definition.
 * 

* p(k) = (mean^k / k!) * exp(-mean) for k >= 0. *

* Valid parameter ranges: mean > 0. * Note: if mean <= 0.0 then always returns zero. *

* Instance methods operate on a user supplied uniform random number generator; they are unsynchronized. *

* Static methods operate on a default uniform random number generator; they are synchronized. *

* Implementation: High performance implementation. * Patchwork Rejection/Inversion method. *

This is a port of pprsc.c from the C-RAND / WIN-RAND library. * C-RAND's implementation, in turn, is based upon *

* H. Zechner (1994): Efficient sampling from continuous and discrete unimodal distributions, * Doctoral Dissertation, 156 pp., Technical University Graz, Austria. *

* Also see *

* Stadlober E., H. Zechner (1999), The patchwork rejection method for sampling from unimodal distributions, * to appear in ACM Transactions on Modelling and Simulation. * * @author [email protected] * @version 1.0, 09/24/99 */ public class Poisson extends AbstractDiscreteDistribution { private static final long serialVersionUID = 1; protected double mean; // precomputed and cached values (for performance only) // cache for < SWITCH_MEAN protected double my_old = -1.0; protected double p,q,p0; protected double[] pp = new double[36]; protected int llll; // cache for >= SWITCH_MEAN protected double my_last = -1.0; protected double ll; protected int k2, k4, k1, k5; protected double dl, dr, r1, r2, r4, r5, lr, l_my, c_pm; protected double f1, f2, f4, f5, p1, p2, p3, p4, p5, p6; // cache for both; protected int m; protected static final double MEAN_MAX = Integer.MAX_VALUE; // for all means larger than that, we don't try to compute a poisson deviation, but return the mean. protected static final double SWITCH_MEAN = 10.0; // switch from method A to method B /** * Constructs a poisson distribution. * Example: mean=1.0. */ public Poisson(double mean, MersenneTwisterFast randomGenerator) { setRandomGenerator(randomGenerator); setMean(mean); } /** * Returns the cumulative distribution function. */ public double cdf(int k) { return Probability.poisson(k,this.mean); } /* * Returns a deep copy of the receiver; the copy will produce identical sequences. * After this call has returned, the copy and the receiver have equal but separate state. * * @return a copy of the receiver. */ /* public Object clone() { Poisson copy = (Poisson) super.clone(); if (this.pp != null) copy.pp = (double[]) this.pp.clone(); return copy; } */ private static double f(int k, double l_nu, double c_pm) { return Math.exp(k * l_nu - Arithmetic.logFactorial(k) - c_pm); } /** * Returns a random number from the distribution. */ public int nextInt() { return nextInt(this.mean); } /** * Returns a random number from the distribution; bypasses the internal state. */ public int nextInt(double theMean) { /****************************************************************** * * * Poisson Distribution - Patchwork Rejection/Inversion * * * ****************************************************************** * * * For parameter my < 10 Tabulated Inversion is applied. * * For my >= 10 Patchwork Rejection is employed: * * The area below the histogram function f(x) is rearranged in * * its body by certain point reflections. Within a large center * * interval variates are sampled efficiently by rejection from * * uniform hats. Rectangular immediate acceptance regions speed * * up the generation. The remaining tails are covered by * * exponential functions. * * * *****************************************************************/ MersenneTwisterFast gen = this.randomGenerator; double my = theMean; double t,g,my_k; double gx,gy,px,py,e,x,xx,delta,v; int sign; //static double p,q,p0,pp[36]; //static long ll,m; double u; int k,i; if (my < SWITCH_MEAN) { // CASE B: Inversion- start new table and calculate p0 if (my != my_old) { my_old = my; llll = 0; p = Math.exp(-my); q = p; p0 = p; //for (k=pp.length; --k >=0; ) pp[k] = 0; } m = (my > 1.0) ? (int)my : 1; for(;;) { u = gen.nextDouble(); // Step U. Uniform sample k = 0; if (u <= p0) return(k); if (llll != 0) { // Step T. Table comparison i = (u > 0.458) ? Math.min(llll,m) : 1; for (k = i; k <=llll; k++) if (u <= pp[k]) return(k); if (llll == 35) continue; } for (k = llll +1; k <= 35; k++) { // Step C. Creation of new prob. p *= my/(double)k; q += p; pp[k] = q; if (u <= q) { llll = k; return(k); } } llll = 35; } } // end my < SWITCH_MEAN else if (my < MEAN_MAX ) { // CASE A: acceptance complement //static double my_last = -1.0; //static long int m, k2, k4, k1, k5; //static double dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm, // f1, f2, f4, f5, p1, p2, p3, p4, p5, p6; int Dk, X, Y; double Ds, U, V, W; m = (int) my; if (my != my_last) { // set-up my_last = my; // approximate deviation of reflection points k2, k4 from my - 1/2 Ds = Math.sqrt(my + 0.25); // mode m, reflection points k2 and k4, and points k1 and k5, which // delimit the centre region of h(x) k2 = (int) Math.ceil(my - 0.5 - Ds); k4 = (int) (my - 0.5 + Ds); k1 = k2 + k2 - m + 1; k5 = k4 + k4 - m; // range width of the critical left and right centre region dl = (double) (k2 - k1); dr = (double) (k5 - k4); // recurrence constants r(k) = p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 r1 = my / (double) k1; r2 = my / (double) k2; r4 = my / (double)(k4 + 1); r5 = my / (double)(k5 + 1); // reciprocal values of the scale parameters of expon. tail envelopes ll = Math.log(r1); // expon. tail left lr = -Math.log(r5); // expon. tail right // Poisson constants, necessary for computing function values f(k) l_my = Math.log(my); c_pm = m * l_my - Arithmetic.logFactorial(m); // function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5 f2 = f(k2, l_my, c_pm); f4 = f(k4, l_my, c_pm); f1 = f(k1, l_my, c_pm); f5 = f(k5, l_my, c_pm); // area of the two centre and the two exponential tail regions // area of the two immediate acceptance regions between k2, k4 p1 = f2 * (dl + 1.0); // immed. left p2 = f2 * dl + p1; // centre left p3 = f4 * (dr + 1.0) + p2; // immed. right p4 = f4 * dr + p3; // centre right p5 = f1 / ll + p4; // expon. tail left p6 = f5 / lr + p5; // expon. tail right } // end set-up for (;;) { // generate uniform number U -- U(0, p6) // case distinction corresponding to U if ((U = gen.nextDouble() * p6) < p2) { // centre left // immediate acceptance region R2 = [k2, m) *[0, f2), X = k2, ... m -1 if ((V = U - p1) < 0.0) return(k2 + (int)(U/f2)); // immediate acceptance region R1 = [k1, k2)*[0, f1), X = k1, ... k2-1 if ((W = V / dl) < f1 ) return(k1 + (int)(V/f1)); // computation of candidate X < k2, and its counterpart Y > k2 // either squeeze-acceptance of X or acceptance-rejection of Y Dk = (int)(dl * gen.nextDouble()) + 1; if (W <= f2 - Dk * (f2 - f2/r2)) { // quick accept of return(k2 - Dk); // X = k2 - Dk } if ((V = f2 + f2 - W) < 1.0) { // quick reject of Y Y = k2 + Dk; if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0)) {// quick accept of return(Y); // Y = k2 + Dk } if (V <= f(Y, l_my, c_pm)) return(Y); // final accept of Y } X = k2 - Dk; } else if (U < p4) { // centre right // immediate acceptance region R3 = [m, k4+1)*[0, f4), X = m, ... k4 if ((V = U - p3) < 0.0) return(k4 - (int)((U - p2)/f4)); // immediate acceptance region R4 = [k4+1, k5+1)*[0, f5) if ((W = V / dr) < f5 ) return(k5 - (int)(V/f5)); // computation of candidate X > k4, and its counterpart Y < k4 // either squeeze-acceptance of X or acceptance-rejection of Y Dk = (int)(dr * gen.nextDouble()) + 1; if (W <= f4 - Dk * (f4 - f4*r4)) { // quick accept of return(k4 + Dk); // X = k4 + Dk } if ((V = f4 + f4 - W) < 1.0) { // quick reject of Y Y = k4 - Dk; if (V <= f4 + Dk * (1.0 - f4)/ dr) { // quick accept of return(Y); // Y = k4 - Dk } if (V <= f(Y, l_my, c_pm)) return(Y); // final accept of Y } X = k4 + Dk; } else { W = gen.nextDouble(); if (U < p5) { // expon. tail left Dk = (int)(1.0 - Math.log(W)/ll); if ((X = k1 - Dk) < 0) continue; // 0 <= X <= k1 - 1 W *= (U - p4) * ll; // W -- U(0, h(x)) if (W <= f1 - Dk * (f1 - f1/r1)) return(X); // quick accept of X } else { // expon. tail right Dk = (int)(1.0 - Math.log(W)/lr); X = k5 + Dk; // X >= k5 + 1 W *= (U - p5) * lr; // W -- U(0, h(x)) if (W <= f5 - Dk * (f5 - f5*r5)) return(X); // quick accept of X } } // acceptance-rejection test of candidate X from the original area // test, whether W <= f(k), with W = U*h(x) and U -- U(0, 1) // log f(X) = (X - m)*log(my) - log X! + log m! if (Math.log(W) <= X * l_my - Arithmetic.logFactorial(X) - c_pm) return(X); } } else { // mean is too large return (int) my; } } /** * Returns the probability distribution function. */ public double pdf(int k) { return Math.exp(k*Math.log(this.mean) - Arithmetic.logFactorial(k) - this.mean); // Overflow sensitive: // return (Math.pow(mean,k) / cephes.Arithmetic.factorial(k)) * Math.exp(-this.mean); } /** * Sets the mean. */ public void setMean(double mean) { this.mean = mean; } /** * Returns a String representation of the receiver. */ public String toString() { return this.getClass().getName()+"("+mean+")"; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy