![JAR search and dependency download from the Maven repository](/logo.png)
eu.project.ttc.engines.CompostAE Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of termsuite-core Show documentation
Show all versions of termsuite-core Show documentation
A Java UIMA-based toolbox for multilingual and efficient terminology extraction an multilingual term alignment
/*******************************************************************************
* Copyright 2015 - CNRS (Centre National de Recherche Scientifique)
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*******************************************************************************/
package eu.project.ttc.engines;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.apache.uima.analysis_engine.AnalysisEngineProcessException;
import org.apache.uima.fit.component.JCasAnnotator_ImplBase;
import org.apache.uima.fit.descriptor.ConfigurationParameter;
import org.apache.uima.fit.descriptor.ExternalResource;
import org.apache.uima.jcas.JCas;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.base.Joiner;
import com.google.common.base.MoreObjects;
import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import eu.project.ttc.engines.cleaner.TermProperty;
import eu.project.ttc.engines.compost.CompostIndexEntry;
import eu.project.ttc.engines.compost.Segment;
import eu.project.ttc.engines.compost.SegmentScoreEntry;
import eu.project.ttc.engines.compost.Segmentation;
import eu.project.ttc.metrics.EditDistance;
import eu.project.ttc.metrics.Levenshtein;
import eu.project.ttc.models.Component;
import eu.project.ttc.models.CompoundType;
import eu.project.ttc.models.Term;
import eu.project.ttc.models.Word;
import eu.project.ttc.models.WordBuilder;
import eu.project.ttc.models.index.CustomTermIndex;
import eu.project.ttc.models.index.TermIndexes;
import eu.project.ttc.models.index.TermMeasure;
import eu.project.ttc.resources.CompostIndex;
import eu.project.ttc.resources.CompostInflectionRules;
import eu.project.ttc.resources.ObserverResource;
import eu.project.ttc.resources.ObserverResource.SubTaskObserver;
import eu.project.ttc.resources.SimpleWordSet;
import eu.project.ttc.resources.TermIndexResource;
import eu.project.ttc.utils.IndexingKey;
import eu.project.ttc.utils.TermSuiteUtils;
public class CompostAE extends JCasAnnotator_ImplBase {
private static final Logger LOGGER = LoggerFactory.getLogger(CompostAE.class);
public static final String TASK_NAME = "Morphosyntactic analysis";
@ExternalResource(key=ObserverResource.OBSERVER, mandatory=true)
protected ObserverResource observerResource;
@ExternalResource(key=TermIndexResource.TERM_INDEX, mandatory=true)
private TermIndexResource termIndexResource;
public static final String LANGUAGE_DICO = "LanguageDico";
@ExternalResource(key=LANGUAGE_DICO, mandatory=true)
private SimpleWordSet languageDico;
public static final String INFLECTION_RULES = "InflectionRules";
@ExternalResource(key=INFLECTION_RULES, mandatory=true, description="Inflection rules for the last segment")
private CompostInflectionRules inflectionRules;
public static final String TRANSFORMATION_RULES = "TransformationRules";
@ExternalResource(key=TRANSFORMATION_RULES, mandatory=true, description="Inflection rules for all but last segments")
private CompostInflectionRules transformationRules;
public static final String NEOCLASSICAL_PREFIXES = "NeoClassicalPrefixes";
@ExternalResource(key=NEOCLASSICAL_PREFIXES, mandatory=true)
private SimpleWordSet neoclassicalPrefixes;
public static final String STOP_LIST = "StopList";
@ExternalResource(key=STOP_LIST, mandatory=true)
private SimpleWordSet stopList;
public static final String ALPHA = "Alpha";
@ConfigurationParameter(name=ALPHA, mandatory=true)
private float alpha;
public static final String BETA = "Beta";
@ConfigurationParameter(name=BETA, mandatory=true)
private float beta;
public static final String GAMMA = "Gamma";
@ConfigurationParameter(name=GAMMA, mandatory=true)
private float gamma;
public static final String DELTA = "Delta";
@ConfigurationParameter(name=DELTA, mandatory=true)
private float delta;
public static final String SCORE_THRESHOLD = "ScoreThreshold";
@ConfigurationParameter(name=SCORE_THRESHOLD, mandatory=true)
private float scoreThreshold;
public static final String SEGMENT_SIMILARITY_THRESHOLD = "SegmentSimilarityThreshold";
@ConfigurationParameter(name=SEGMENT_SIMILARITY_THRESHOLD, mandatory=true)
private float segmentSimilarityThreshold;
public static final String MIN_COMPONENT_SIZE = "MinimumComponentSize";
@ConfigurationParameter(name=MIN_COMPONENT_SIZE, mandatory=false, defaultValue = "3")
private int minComponentSize;
public static final String MAX_NUMBER_OF_COMPONENTS = "MaxNumberOfComponents";
@ConfigurationParameter(name=MAX_NUMBER_OF_COMPONENTS, mandatory=false, defaultValue = "3")
private int maxNumberOfComponents;
private EditDistance distance = new Levenshtein();
private CompostIndex compostIndex;
private static IndexingKey similarityIndexingKey = TermSuiteUtils.KEY_THREE_FIRST_LETTERS;
private CustomTermIndex swtLemmaIndex;
private TermMeasure wrMeasure;
private LoadingCache segmentScoreEntries = CacheBuilder.newBuilder()
.maximumSize(100000)
.recordStats()
.build(
new CacheLoader() {
public SegmentScoreEntry load(String key) { // no checked exception
return computeSegmentScore(key);
}
});
private LoadingCache segmentLemmaCache = CacheBuilder.newBuilder()
.maximumSize(100000)
.recordStats()
.build(
new CacheLoader() {
public String load(String segment) { // no checked exception
return findSegmentLemma(segment);
}
});
@Override
public void process(JCas aJCas) throws AnalysisEngineProcessException {
}
@Override
public void collectionProcessComplete()
throws AnalysisEngineProcessException {
SubTaskObserver observer = observerResource.getTaskObserver(TASK_NAME);
observer.setTotalTaskWork(termIndexResource.getTermIndex().getWords().size());
LOGGER.info("Starting morphology analysis");
LOGGER.debug(this.toString());
wrMeasure = termIndexResource.getTermIndex().getWRMeasure();
swtLemmaIndex = termIndexResource.getTermIndex().getCustomIndex(TermIndexes.SINGLE_WORD_LEMMA);
buildCompostIndex();
int cnt = 0;
int observingStep = 100;
for(Word word:this.termIndexResource.getTermIndex().getWords()) {
cnt++;
if(cnt%observingStep == 0) {
observer.work(observingStep);
}
Map scores = computeScores(word.getLemma());
if(scores.size() > 0) {
float bestScore = 0;
Segmentation bestSegmentation = null;
for(Segmentation s:scores.keySet()) {
if(scores.get(s) > bestScore) {
bestScore = scores.get(s).floatValue();
bestSegmentation = s;
}
}
// build the word component from segmentation
WordBuilder builder = new WordBuilder(word);
for(Segment seg:bestSegmentation.getSegments()) {
String lemma = segmentLemmaCache.getUnchecked(seg.getLemma());
builder.addComponent(
seg.getBegin(),
seg.getEnd(),
lemma
);
if(seg.isNeoclassical())
builder.setCompoundType(CompoundType.NEOCLASSICAL);
else
builder.setCompoundType(CompoundType.NATIVE);
}
builder.create();
// log the word composition
if(LOGGER.isDebugEnabled()) {
List componentStrings = Lists.newArrayList();
for(Component component:word.getComponents())
componentStrings.add(component.toString());
LOGGER.debug("{} [{}]", word.getLemma(), Joiner.on(' ').join(componentStrings));
}
}
}
LOGGER.debug("segment score cache size: {}", segmentScoreEntries.size());
LOGGER.debug("segment score hit count: " + segmentScoreEntries.stats().hitCount());
LOGGER.debug("segment score hit rate: " + segmentScoreEntries.stats().hitRate());
LOGGER.debug("segment score eviction count: " + segmentScoreEntries.stats().evictionCount());
termIndexResource.getTermIndex().dropCustomIndex(TermIndexes.SINGLE_WORD_LEMMA);
segmentScoreEntries.invalidateAll();
segmentLemmaCache.invalidateAll();
}
private void buildCompostIndex() {
LOGGER.debug("Building compost index");
compostIndex = new CompostIndex(similarityIndexingKey);
for(String word:languageDico.getElements())
compostIndex.addDicoWord(word);
for(String word:neoclassicalPrefixes.getElements())
compostIndex.addNeoclassicalPrefix(word);
for(Word w:termIndexResource.getTermIndex().getWords())
compostIndex.addInCorpus(w.getLemma());
LOGGER.debug("Compost index size: " + compostIndex.size());
}
/*
* Compute scores for all segmentations of the word
*/
private Map computeScores(String wordStr) {
Map scores = Maps.newHashMap();
List rawSegmentations = Segmentation.getSegmentations(wordStr, maxNumberOfComponents, minComponentSize);
for(Segmentation segmentation:rawSegmentations) {
double segmentationScore = computeSegmentationScore(segmentation);
if(segmentationScore >= this.scoreThreshold)
scores.put(segmentation, segmentationScore);
}
return scores;
}
/*
* Compute the score of a given segmentation
*/
private float computeSegmentationScore(Segmentation segmentation) {
float sum = 0;
int index = 0;
for(Segment s:segmentation.getSegments()) {
SegmentScoreEntry scoreEntry = index == (segmentation.size() - 1) ?
getBestInflectedScoreEntry(s, this.inflectionRules):
getBestInflectedScoreEntry(s, this.transformationRules);
sum+=scoreEntry.getScore();
s.setLemma(scoreEntry.getDicoEntry() == null ?
s.getSubstring() :
scoreEntry.getDicoEntry().getText());
index++;
}
return sum / segmentation.size();
}
/*
* Returns the best score of a segment considering all its possible inflections or transformations.
*/
private SegmentScoreEntry getBestInflectedScoreEntry(Segment s,
CompostInflectionRules rules) {
SegmentScoreEntry bestScoreEntry = this.segmentScoreEntries.getUnchecked(s.getSubstring());
for(String seg:rules.getInflections(s.getSubstring())) {
SegmentScoreEntry scoreEntry = this.segmentScoreEntries.getUnchecked(seg);
if(scoreEntry.getScore()>bestScoreEntry.getScore())
bestScoreEntry = scoreEntry;
}
// this.segmentScoreEntries.put(s.getSubstring(), bestScoreEntry);
return bestScoreEntry;
}
/*
* Compute the score of a segment
*/
private SegmentScoreEntry computeSegmentScore(String segment) {
if(this.stopList.contains(segment) )
return SegmentScoreEntry.SCORE_ZERO;
CompostIndexEntry closestEntry = compostIndex.getEntry(segment);
double indexSimilarity = 0.0;
if(closestEntry == null) {
if(segmentSimilarityThreshold == 1)
// do not compare similarity of this segment to the index
return SegmentScoreEntry.SCORE_ZERO;
// Find an entry by similarity
Iterator it = compostIndex.closedEntryCandidateIterator(segment);
int entryLength = segment.length();
double dist = 0;
CompostIndexEntry entry;
while(it.hasNext()) {
entry = it.next();
dist = distance.computeNormalized(segment, entry.getText());
if(Math.abs(entry.getText().length() - entryLength) <= 3
&& dist >= segmentSimilarityThreshold) {
indexSimilarity = dist;
closestEntry = entry;
}
}
if(closestEntry == null) {
// could not find any close entry in the compost index
return SegmentScoreEntry.SCORE_ZERO;
}
} else {
indexSimilarity = 1f;
}
int inCorpus = 0;
int inDico = closestEntry.isInDico() || closestEntry.isInNeoClassicalPrefix() ? 1 : 0;
// retrieves all sw terms that have the same lemma
Collection corpusTerm = swtLemmaIndex.getTerms(segment);
float wr = 0f;
for(Iterator it = corpusTerm.iterator(); it.hasNext();)
wr+=wrMeasure.getValue(it.next());
float dataCorpus;
if(closestEntry.isInCorpus() && !corpusTerm.isEmpty()) {
dataCorpus = wr / (float)wrMeasure.getMax();
inCorpus = 1;
} else {
dataCorpus = 0;
inCorpus = closestEntry.isInNeoClassicalPrefix() ? 1 : 0;
}
float score = this.alpha * (float)indexSimilarity + this.beta * inDico + this.gamma * inCorpus + this.delta * dataCorpus;
if(LOGGER.isTraceEnabled()) {
LOGGER.trace("Score for {} is {} [alpha: {} beta: {} gamma: {} delta: {}]",
segment,
score,
indexSimilarity,
inDico,
inCorpus,
dataCorpus);
}
return new SegmentScoreEntry(segment, findSegmentLemma(segment), score, closestEntry);
}
/*
* Finds the best lemma for a segment
*/
private String findSegmentLemma(String segment) {
Collection candidates = this.neoclassicalPrefixes.getTranslations(segment);
if(candidates.isEmpty())
return segment;
else {
TermMeasure wrLog = termIndexResource.getTermIndex().getWRLogMeasure();
TermProperty property = wrLog.isComputed() ? TermProperty.WR_LOG : TermProperty.FREQUENCY;
String bestLemma = segment;
double bestValue = 0d;
for(String candidateLemma:candidates) {
for(Term t:swtLemmaIndex.getTerms(candidateLemma)) {
if(property.getDoubleValue(termIndexResource.getTermIndex(), t) > bestValue) {
bestValue = property.getDoubleValue(termIndexResource.getTermIndex(), t);
bestLemma = t.getLemma();
}
}
}
return bestLemma;
}
}
@Override
public String toString() {
return MoreObjects.toStringHelper(this)
.add("a", this.alpha)
.add("b", this.beta)
.add("c", this.gamma)
.add("d", this.delta)
.add("minCompSize", this.minComponentSize)
.add("maxCompNum", this.maxNumberOfComponents)
.add("similarityTh", this.segmentSimilarityThreshold)
.add("scoreTh", this.scoreThreshold)
.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy