All Downloads are FREE. Search and download functionalities are using the official Maven repository.

codegen.templates.Parser.jj Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
<@pp.dropOutputFile />

<@pp.changeOutputFile name="javacc/Parser.jj" />

options {
    STATIC = false;
    IGNORE_CASE = true;
    UNICODE_INPUT = true;
}


PARSER_BEGIN(${parser.class})

package ${parser.package};

<#list (parser.imports!default.parser.imports) as importStr>
import ${importStr};


import org.apache.calcite.avatica.util.Casing;
import org.apache.calcite.avatica.util.DateTimeUtils;
import org.apache.calcite.avatica.util.TimeUnit;
import org.apache.calcite.rel.type.RelDataType;
import org.apache.calcite.runtime.CalciteContextException;
import org.apache.calcite.sql.JoinConditionType;
import org.apache.calcite.sql.JoinType;
import org.apache.calcite.sql.SqlAlter;
import org.apache.calcite.sql.SqlBasicTypeNameSpec;
import org.apache.calcite.sql.SqlBinaryOperator;
import org.apache.calcite.sql.SqlCall;
import org.apache.calcite.sql.SqlCharStringLiteral;
import org.apache.calcite.sql.SqlCollation;
import org.apache.calcite.sql.SqlCollectionTypeNameSpec;
import org.apache.calcite.sql.SqlDataTypeSpec;
import org.apache.calcite.sql.SqlDateLiteral;
import org.apache.calcite.sql.SqlDelete;
import org.apache.calcite.sql.SqlDescribeSchema;
import org.apache.calcite.sql.SqlDescribeTable;
import org.apache.calcite.sql.SqlDynamicParam;
import org.apache.calcite.sql.SqlExplain;
import org.apache.calcite.sql.SqlExplainFormat;
import org.apache.calcite.sql.SqlExplainLevel;
import org.apache.calcite.sql.SqlFunction;
import org.apache.calcite.sql.SqlFunctionCategory;
import org.apache.calcite.sql.SqlHint;
import org.apache.calcite.sql.SqlIdentifier;
import org.apache.calcite.sql.SqlInsert;
import org.apache.calcite.sql.SqlInsertKeyword;
import org.apache.calcite.sql.SqlIntervalLiteral;
import org.apache.calcite.sql.SqlIntervalQualifier;
import org.apache.calcite.sql.SqlJdbcDataTypeName;
import org.apache.calcite.sql.SqlJdbcFunctionCall;
import org.apache.calcite.sql.SqlJoin;
import org.apache.calcite.sql.SqlJsonConstructorNullClause;
import org.apache.calcite.sql.SqlJsonEncoding;
import org.apache.calcite.sql.SqlJsonExistsErrorBehavior;
import org.apache.calcite.sql.SqlJsonEmptyOrError;
import org.apache.calcite.sql.SqlJsonQueryEmptyOrErrorBehavior;
import org.apache.calcite.sql.SqlJsonQueryWrapperBehavior;
import org.apache.calcite.sql.SqlJsonValueEmptyOrErrorBehavior;
import org.apache.calcite.sql.SqlJsonValueReturning;
import org.apache.calcite.sql.SqlKind;
import org.apache.calcite.sql.SqlLiteral;
import org.apache.calcite.sql.SqlMatchRecognize;
import org.apache.calcite.sql.SqlMerge;
import org.apache.calcite.sql.SqlNode;
import org.apache.calcite.sql.SqlNodeList;
import org.apache.calcite.sql.SqlNumericLiteral;
import org.apache.calcite.sql.SqlOperator;
import org.apache.calcite.sql.SqlOrderBy;
import org.apache.calcite.sql.SqlPivot;
import org.apache.calcite.sql.SqlPostfixOperator;
import org.apache.calcite.sql.SqlPrefixOperator;
import org.apache.calcite.sql.SqlRowTypeNameSpec;
import org.apache.calcite.sql.SqlSampleSpec;
import org.apache.calcite.sql.SqlSelect;
import org.apache.calcite.sql.SqlSelectKeyword;
import org.apache.calcite.sql.SqlSetOption;
import org.apache.calcite.sql.SqlSnapshot;
import org.apache.calcite.sql.SqlTableRef;
import org.apache.calcite.sql.SqlTimeLiteral;
import org.apache.calcite.sql.SqlTimestampLiteral;
import org.apache.calcite.sql.SqlTypeNameSpec;
import org.apache.calcite.sql.SqlUnnestOperator;
import org.apache.calcite.sql.SqlUnpivot;
import org.apache.calcite.sql.SqlUpdate;
import org.apache.calcite.sql.SqlUserDefinedTypeNameSpec;
import org.apache.calcite.sql.SqlUtil;
import org.apache.calcite.sql.SqlWindow;
import org.apache.calcite.sql.SqlWith;
import org.apache.calcite.sql.SqlWithItem;
import org.apache.calcite.sql.fun.SqlCase;
import org.apache.calcite.sql.fun.SqlInternalOperators;
import org.apache.calcite.sql.fun.SqlLibraryOperators;
import org.apache.calcite.sql.fun.SqlStdOperatorTable;
import org.apache.calcite.sql.fun.SqlTrimFunction;
import org.apache.calcite.sql.parser.Span;
import org.apache.calcite.sql.parser.SqlAbstractParserImpl;
import org.apache.calcite.sql.parser.SqlParseException;
import org.apache.calcite.sql.parser.SqlParser;
import org.apache.calcite.sql.parser.SqlParserImplFactory;
import org.apache.calcite.sql.parser.SqlParserPos;
import org.apache.calcite.sql.parser.SqlParserUtil;
import org.apache.calcite.sql.type.SqlTypeName;
import org.apache.calcite.sql.validate.SqlConformance;
import org.apache.calcite.util.Glossary;
import org.apache.calcite.util.NlsString;
import org.apache.calcite.util.Pair;
import org.apache.calcite.util.SourceStringReader;
import org.apache.calcite.util.Util;
import org.apache.calcite.util.trace.CalciteTrace;

import org.slf4j.Logger;

import java.io.Reader;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Calendar;
import java.util.Collections;
import java.util.List;
import java.util.Locale;

import static org.apache.calcite.util.Static.RESOURCE;

/**
 * SQL parser, generated from Parser.jj by JavaCC.
 *
 * 

The public wrapper for this parser is {@link SqlParser}. */ public class ${parser.class} extends SqlAbstractParserImpl { private static final Logger LOGGER = CalciteTrace.getParserTracer(); // Can't use quoted literal because of a bug in how JavaCC translates // backslash-backslash. private static final char BACKSLASH = 0x5c; private static final char DOUBLE_QUOTE = 0x22; private static final String DQ = DOUBLE_QUOTE + ""; private static final String DQDQ = DQ + DQ; private static Metadata metadata; private Casing unquotedCasing; private Casing quotedCasing; private int identifierMaxLength; private SqlConformance conformance; /** * {@link SqlParserImplFactory} implementation for creating parser. */ public static final SqlParserImplFactory FACTORY = new SqlParserImplFactory() { public SqlAbstractParserImpl getParser(Reader reader) { final ${parser.class} parser = new ${parser.class}(reader); if (reader instanceof SourceStringReader) { final String sql = ((SourceStringReader) reader).getSourceString(); parser.setOriginalSql(sql); } return parser; } }; public SqlParseException normalizeException(Throwable ex) { try { if (ex instanceof ParseException) { ex = cleanupParseException((ParseException) ex); } return convertException(ex); } catch (ParseException e) { throw new AssertionError(e); } } public Metadata getMetadata() { synchronized (${parser.class}.class) { if (metadata == null) { metadata = new MetadataImpl( new ${parser.class}(new java.io.StringReader(""))); } return metadata; } } public void setTabSize(int tabSize) { jj_input_stream.setTabSize(tabSize); } public void switchTo(SqlAbstractParserImpl.LexicalState state) { final int stateOrdinal = Arrays.asList(${parser.class}TokenManager.lexStateNames) .indexOf(state.name()); token_source.SwitchTo(stateOrdinal); } public void setQuotedCasing(Casing quotedCasing) { this.quotedCasing = quotedCasing; } public void setUnquotedCasing(Casing unquotedCasing) { this.unquotedCasing = unquotedCasing; } public void setIdentifierMaxLength(int identifierMaxLength) { this.identifierMaxLength = identifierMaxLength; } public void setConformance(SqlConformance conformance) { this.conformance = conformance; } public SqlNode parseSqlExpressionEof() throws Exception { return SqlExpressionEof(); } public SqlNode parseSqlStmtEof() throws Exception { return SqlStmtEof(); } public SqlNodeList parseSqlStmtList() throws Exception { return SqlStmtList(); } private SqlNode extend(SqlNode table, SqlNodeList extendList) { return SqlStdOperatorTable.EXTEND.createCall( Span.of(table, extendList).pos(), table, extendList); } /** Adds a warning that a token such as "HOURS" was used, * whereas the SQL standard only allows "HOUR". * *

Currently, we silently add an exception to a list of warnings. In * future, we may have better compliance checking, for example a strict * compliance mode that throws if any non-standard features are used. */ private TimeUnit warn(TimeUnit timeUnit) throws ParseException { final String token = getToken(0).image.toUpperCase(Locale.ROOT); warnings.add( SqlUtil.newContextException(getPos(), RESOURCE.nonStandardFeatureUsed(token))); return timeUnit; } } PARSER_END(${parser.class}) /*************************************** * Utility Codes for Semantic Analysis * ***************************************/ /* For Debug */ JAVACODE void debug_message1() { LOGGER.info("{} , {}", getToken(0).image, getToken(1).image); } JAVACODE String unquotedIdentifier() { return SqlParserUtil.toCase(getToken(0).image, unquotedCasing); } /** * Allows parser to be extended with new types of table references. The * default implementation of this production is empty. */ SqlNode ExtendedTableRef() : { } { UnusedExtension() { return null; } } /** * Allows an OVER clause following a table expression as an extension to * standard SQL syntax. The default implementation of this production is empty. */ SqlNode TableOverOpt() : { } { { return null; } } /* * Parses dialect-specific keywords immediately following the SELECT keyword. */ void SqlSelectKeywords(List keywords) : {} { E() } /* * Parses dialect-specific keywords immediately following the INSERT keyword. */ void SqlInsertKeywords(List keywords) : {} { E() } /* * Parse Floor/Ceil function parameters */ SqlNode FloorCeilOptions(Span s, boolean floorFlag) : { SqlNode node; } { node = StandardFloorCeilOptions(s, floorFlag) { return node; } } /* // This file contains the heart of a parser for SQL SELECT statements. // code can be shared between various parsers (for example, a DDL parser and a // DML parser) but is not a standalone JavaCC file. You need to prepend a // parser declaration (such as that in Parser.jj). */ /* Epsilon */ JAVACODE void E() {} JAVACODE List startList(Object o) { List list = new ArrayList(); list.add(o); return list; } /* * NOTE jvs 6-Feb-2004: The straightforward way to implement the SQL grammar is * to keep query expressions (SELECT, UNION, etc) separate from row expressions * (+, LIKE, etc). However, this is not possible with an LL(k) parser, because * both kinds of expressions allow parenthesization, so no fixed amount of left * context is ever good enough. A sub-query can be a leaf in a row expression, * and can include operators like UNION, so it's not even possible to use a * syntactic lookahead rule like "look past an indefinite number of parentheses * until you see SELECT, VALUES, or TABLE" (since at that point we still * don't know whether we're parsing a sub-query like ((select ...) + x) * vs. (select ... union select ...). * * The somewhat messy solution is to unify the two kinds of expression, * and to enforce syntax rules using parameterized context. This * is the purpose of the ExprContext parameter. It is passed to * most expression productions, which check the expressions encountered * against the context for correctness. When a query * element like SELECT is encountered, the production calls * checkQueryExpression, which will throw an exception if * a row expression was expected instead. When a row expression like * IN is encountered, the production calls checkNonQueryExpression * instead. It is very important to understand how this works * when modifying the grammar. * * The commingling of expressions results in some bogus ambiguities which are * resolved with LOOKAHEAD hints. The worst example is comma. SQL allows both * (WHERE x IN (1,2)) and (WHERE x IN (select ...)). This means when we parse * the right-hand-side of an IN, we have to allow any kind of expression inside * the parentheses. Now consider the expression "WHERE x IN(SELECT a FROM b * GROUP BY c,d)". When the parser gets to "c,d" it doesn't know whether the * comma indicates the end of the GROUP BY or the end of one item in an IN * list. Luckily, we know that select and comma-list are mutually exclusive * within IN, so we use maximal munch for the GROUP BY comma. However, this * usage of hints could easily mask unintended ambiguities resulting from * future changes to the grammar, making it very brittle. */ JAVACODE protected SqlParserPos getPos() { return new SqlParserPos( token.beginLine, token.beginColumn, token.endLine, token.endColumn); } /** Starts a span at the current position. */ JAVACODE Span span() { return Span.of(getPos()); } JAVACODE void checkQueryExpression(ExprContext exprContext) { switch (exprContext) { case ACCEPT_NON_QUERY: case ACCEPT_SUB_QUERY: case ACCEPT_CURSOR: throw SqlUtil.newContextException(getPos(), RESOURCE.illegalQueryExpression()); } } JAVACODE void checkNonQueryExpression(ExprContext exprContext) { switch (exprContext) { case ACCEPT_QUERY: throw SqlUtil.newContextException(getPos(), RESOURCE.illegalNonQueryExpression()); } } /** * Converts a ParseException (local to this particular instantiation * of the parser) into a SqlParseException (common to all parsers). */ JAVACODE SqlParseException convertException(Throwable ex) { if (ex instanceof SqlParseException) { return (SqlParseException) ex; } SqlParserPos pos = null; int[][] expectedTokenSequences = null; String[] tokenImage = null; if (ex instanceof ParseException) { ParseException pex = (ParseException) ex; expectedTokenSequences = pex.expectedTokenSequences; tokenImage = pex.tokenImage; if (pex.currentToken != null) { final Token token = pex.currentToken.next; // Checks token.image.equals("1") to avoid recursive call. // The SqlAbstractParserImpl#MetadataImpl constructor uses constant "1" to // throw intentionally to collect the expected tokens. if (!token.image.equals("1") && getMetadata().isKeyword(token.image) && SqlParserUtil.allowsIdentifier(tokenImage, expectedTokenSequences)) { // If the next token is a keyword, reformat the error message as: // Incorrect syntax near the keyword '{keyword}' at line {line_number}, // column {column_number}. final String expecting = ex.getMessage() .substring(ex.getMessage().indexOf("Was expecting")); final String errorMsg = String.format("Incorrect syntax near the keyword '%s' " + "at line %d, column %d.\n%s", token.image, token.beginLine, token.beginColumn, expecting); // Replace the ParseException with explicit error message. ex = new ParseException(errorMsg); } pos = new SqlParserPos( token.beginLine, token.beginColumn, token.endLine, token.endColumn); } } else if (ex instanceof TokenMgrError) { TokenMgrError tme = (TokenMgrError) ex; expectedTokenSequences = null; tokenImage = null; // Example: // Lexical error at line 3, column 24. Encountered "#" after "a". final java.util.regex.Pattern pattern = java.util.regex.Pattern.compile( "(?s)Lexical error at line ([0-9]+), column ([0-9]+).*"); java.util.regex.Matcher matcher = pattern.matcher(ex.getMessage()); if (matcher.matches()) { int line = Integer.parseInt(matcher.group(1)); int column = Integer.parseInt(matcher.group(2)); pos = new SqlParserPos(line, column, line, column); } } else if (ex instanceof CalciteContextException) { // CalciteContextException is the standard wrapper for exceptions // produced by the validator, but in the parser, the standard is // SqlParseException; so, strip it away. In case you were wondering, // the CalciteContextException appears because the parser // occasionally calls into validator-style code such as // SqlSpecialOperator.reduceExpr. CalciteContextException ece = (CalciteContextException) ex; pos = new SqlParserPos( ece.getPosLine(), ece.getPosColumn(), ece.getEndPosLine(), ece.getEndPosColumn()); ex = ece.getCause(); } return new SqlParseException( ex.getMessage(), pos, expectedTokenSequences, tokenImage, ex); } /** * Removes or transforms misleading information from a parse exception. * * @param e dirty excn * * @return clean excn */ JAVACODE ParseException cleanupParseException(ParseException ex) { if (ex.expectedTokenSequences == null) { return ex; } int iIdentifier = Arrays.asList(ex.tokenImage).indexOf(""); // Find all sequences in the error which contain identifier. For // example, // {} // {A} // {B, C} // {D, } // {D, A} // {D, B} // // would yield // {} // {D} boolean id = false; final List prefixList = new ArrayList(); for (int i = 0; i < ex.expectedTokenSequences.length; ++i) { int[] seq = ex.expectedTokenSequences[i]; int j = seq.length - 1; int i1 = seq[j]; if (i1 == iIdentifier) { int[] prefix = new int[j]; System.arraycopy(seq, 0, prefix, 0, j); prefixList.add(prefix); } } if (prefixList.isEmpty()) { return ex; } int[][] prefixes = (int[][]) prefixList.toArray(new int[prefixList.size()][]); // Since was one of the possible productions, // we know that the parser will also have included all // of the non-reserved keywords (which are treated as // identifiers in non-keyword contexts). So, now we need // to clean those out, since they're totally irrelevant. final List list = new ArrayList(); Metadata metadata = getMetadata(); for (int i = 0; i < ex.expectedTokenSequences.length; ++i) { int [] seq = ex.expectedTokenSequences[i]; String tokenImage = ex.tokenImage[seq[seq.length - 1]]; String token = SqlParserUtil.getTokenVal(tokenImage); if (token == null || !metadata.isNonReservedKeyword(token)) { list.add(seq); continue; } boolean match = matchesPrefix(seq, prefixes); if (!match) { list.add(seq); } } ex.expectedTokenSequences = (int [][]) list.toArray(new int [list.size()][]); return ex; } JAVACODE boolean matchesPrefix(int[] seq, int[][] prefixes) { nextPrefix: for (int[] prefix : prefixes) { if (seq.length == prefix.length + 1) { for (int k = 0; k < prefix.length; k++) { if (prefix[k] != seq[k]) { continue nextPrefix; } } return true; } } return false; } /***************************************** * Syntactical Descriptions * *****************************************/ /** * Parses either a row expression or a query expression with an optional * ORDER BY. * *

Postgres syntax for limit: * *

 *    [ LIMIT { count | ALL } ]
 *    [ OFFSET start ]
*
* *

MySQL syntax for limit: * *

 *    [ LIMIT { count | start, count } ]
*
* *

SQL:2008 syntax for limit: * *

 *    [ OFFSET start { ROW | ROWS } ]
 *    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]
*
*/ SqlNode OrderedQueryOrExpr(ExprContext exprContext) : { SqlNode e; SqlNodeList orderBy = null; SqlNode start = null; SqlNode count = null; } { ( e = QueryOrExpr(exprContext) ) [ // use the syntactic type of the expression we just parsed // to decide whether ORDER BY makes sense orderBy = OrderBy(e.isA(SqlKind.QUERY)) ] [ // Postgres-style syntax. "LIMIT ... OFFSET ..." ( // MySQL-style syntax. "LIMIT start, count" LOOKAHEAD(2) start = UnsignedNumericLiteralOrParam() count = UnsignedNumericLiteralOrParam() { if (!this.conformance.isLimitStartCountAllowed()) { throw SqlUtil.newContextException(getPos(), RESOURCE.limitStartCountNotAllowed()); } } | count = UnsignedNumericLiteralOrParam() | ) ] [ // ROW or ROWS is required in SQL:2008 but we make it optional // because it is not present in Postgres-style syntax. // If you specify both LIMIT start and OFFSET, OFFSET wins. start = UnsignedNumericLiteralOrParam() [ | ] ] [ // SQL:2008-style syntax. "OFFSET ... FETCH ...". // If you specify both LIMIT and FETCH, FETCH wins. ( | ) count = UnsignedNumericLiteralOrParam() ( | ) ] { if (orderBy != null || start != null || count != null) { if (orderBy == null) { orderBy = SqlNodeList.EMPTY; } e = new SqlOrderBy(getPos(), e, orderBy, start, count); } return e; } } /** * Parses a leaf in a query expression (SELECT, VALUES or TABLE). */ SqlNode LeafQuery(ExprContext exprContext) : { SqlNode e; } { { // ensure a query is legal in this context checkQueryExpression(exprContext); } e = SqlSelect() { return e; } | e = TableConstructor() { return e; } | e = ExplicitTable(getPos()) { return e; } } /** * Parses a parenthesized query or single row expression. */ SqlNode ParenthesizedExpression(ExprContext exprContext) : { SqlNode e; } { { // we've now seen left paren, so queries inside should // be allowed as sub-queries switch (exprContext) { case ACCEPT_SUB_QUERY: exprContext = ExprContext.ACCEPT_NONCURSOR; break; case ACCEPT_CURSOR: exprContext = ExprContext.ACCEPT_ALL; break; } } e = OrderedQueryOrExpr(exprContext) { return e; } } /** * Parses a parenthesized query or comma-list of row expressions. * *

REVIEW jvs 8-Feb-2004: There's a small hole in this production. It can be * used to construct something like * *

 * WHERE x IN (select count(*) from t where c=d,5)
*
* *

which should be illegal. The above is interpreted as equivalent to * *

 * WHERE x IN ((select count(*) from t where c=d),5)
*
* *

which is a legal use of a sub-query. The only way to fix the hole is to * be able to remember whether a subexpression was parenthesized or not, which * means preserving parentheses in the SqlNode tree. This is probably * desirable anyway for use in purely syntactic parsing applications (e.g. SQL * pretty-printer). However, if this is done, it's important to also make * isA() on the paren node call down to its operand so that we can * always correctly discriminate a query from a row expression. */ SqlNodeList ParenthesizedQueryOrCommaList( ExprContext exprContext) : { SqlNode e; List list; ExprContext firstExprContext = exprContext; final Span s; } { { // we've now seen left paren, so a query by itself should // be interpreted as a sub-query s = span(); switch (exprContext) { case ACCEPT_SUB_QUERY: firstExprContext = ExprContext.ACCEPT_NONCURSOR; break; case ACCEPT_CURSOR: firstExprContext = ExprContext.ACCEPT_ALL; break; } } e = OrderedQueryOrExpr(firstExprContext) { list = startList(e); } ( { // a comma-list can't appear where only a query is expected checkNonQueryExpression(exprContext); } e = Expression(exprContext) { list.add(e); } )* { return new SqlNodeList(list, s.end(this)); } } /** As ParenthesizedQueryOrCommaList, but allows DEFAULT * in place of any of the expressions. For example, * {@code (x, DEFAULT, null, DEFAULT)}. */ SqlNodeList ParenthesizedQueryOrCommaListWithDefault( ExprContext exprContext) : { SqlNode e; List list; ExprContext firstExprContext = exprContext; final Span s; } { { // we've now seen left paren, so a query by itself should // be interpreted as a sub-query s = span(); switch (exprContext) { case ACCEPT_SUB_QUERY: firstExprContext = ExprContext.ACCEPT_NONCURSOR; break; case ACCEPT_CURSOR: firstExprContext = ExprContext.ACCEPT_ALL; break; } } ( e = OrderedQueryOrExpr(firstExprContext) | e = Default() ) { list = startList(e); } ( { // a comma-list can't appear where only a query is expected checkNonQueryExpression(exprContext); } ( e = Expression(exprContext) | e = Default() ) { list.add(e); } )* { return new SqlNodeList(list, s.end(this)); } } /** * Parses function parameter lists. * If the list starts with DISTINCT or ALL, it is discarded. */ List UnquantifiedFunctionParameterList( ExprContext exprContext) : { final List args; } { args = FunctionParameterList(exprContext) { final SqlLiteral quantifier = (SqlLiteral) args.get(0); args.remove(0); // remove DISTINCT or ALL, if present return args; } } /** * Parses function parameter lists including DISTINCT keyword recognition, * DEFAULT, and named argument assignment. */ List FunctionParameterList( ExprContext exprContext) : { final SqlLiteral qualifier; final List list = new ArrayList(); } { ( qualifier = AllOrDistinct() { list.add(qualifier); } | { list.add(null); } ) Arg0(list, exprContext) ( { // a comma-list can't appear where only a query is expected checkNonQueryExpression(exprContext); } Arg(list, exprContext) )* { return list; } } SqlLiteral AllOrDistinct() : { } { { return SqlSelectKeyword.DISTINCT.symbol(getPos()); } | { return SqlSelectKeyword.ALL.symbol(getPos()); } } void Arg0(List list, ExprContext exprContext) : { SqlIdentifier name = null; SqlNode e = null; final ExprContext firstExprContext; { // we've now seen left paren, so queries inside should // be allowed as sub-queries switch (exprContext) { case ACCEPT_SUB_QUERY: firstExprContext = ExprContext.ACCEPT_NONCURSOR; break; case ACCEPT_CURSOR: firstExprContext = ExprContext.ACCEPT_ALL; break; default: firstExprContext = exprContext; break; } } } { [ LOOKAHEAD(2) name = SimpleIdentifier() ] ( e = Default() | e = OrderedQueryOrExpr(firstExprContext) ) { if (e != null) { if (name != null) { e = SqlStdOperatorTable.ARGUMENT_ASSIGNMENT.createCall( Span.of(name, e).pos(), e, name); } list.add(e); } } } void Arg(List list, ExprContext exprContext) : { SqlIdentifier name = null; SqlNode e = null; } { [ LOOKAHEAD(2) name = SimpleIdentifier() ] ( e = Default() | e = Expression(exprContext) ) { if (e != null) { if (name != null) { e = SqlStdOperatorTable.ARGUMENT_ASSIGNMENT.createCall( Span.of(name, e).pos(), e, name); } list.add(e); } } } SqlNode Default() : {} { { return SqlStdOperatorTable.DEFAULT.createCall(getPos()); } } /** * Parses a query (SELECT, UNION, INTERSECT, EXCEPT, VALUES, TABLE) followed by * the end-of-file symbol. */ SqlNode SqlQueryEof() : { SqlNode query; } { query = OrderedQueryOrExpr(ExprContext.ACCEPT_QUERY) { return query; } } /** * Parses a list of SQL statements separated by semicolon. * The semicolon is required between statements, but is * optional at the end. */ SqlNodeList SqlStmtList() : { final List stmtList = new ArrayList(); SqlNode stmt; } { stmt = SqlStmt() { stmtList.add(stmt); } ( [ stmt = SqlStmt() { stmtList.add(stmt); } ] )* { return new SqlNodeList(stmtList, Span.of(stmtList).pos()); } } /** * Parses an SQL statement. */ SqlNode SqlStmt() : { SqlNode stmt; } { ( <#-- Add methods to parse additional statements here --> <#list (parser.statementParserMethods!default.parser.statementParserMethods) as method> LOOKAHEAD(2) stmt = ${method} | stmt = SqlSetOption(Span.of(), null) | stmt = SqlAlter() | <#if (parser.createStatementParserMethods!default.parser.createStatementParserMethods)?size != 0> stmt = SqlCreate() | <#if (parser.dropStatementParserMethods!default.parser.dropStatementParserMethods)?size != 0> stmt = SqlDrop() | stmt = OrderedQueryOrExpr(ExprContext.ACCEPT_QUERY) | stmt = SqlExplain() | stmt = SqlDescribe() | stmt = SqlInsert() | stmt = SqlDelete() | stmt = SqlUpdate() | stmt = SqlMerge() | stmt = SqlProcedureCall() ) { return stmt; } } /** * Parses an SQL statement followed by the end-of-file symbol. */ SqlNode SqlStmtEof() : { SqlNode stmt; } { stmt = SqlStmt() { return stmt; } } <#-- Add implementations of additional parser statement calls here --> <#list (parser.implementationFiles!default.parser.implementationFiles) as file> <#include "/@includes/"+file /> SqlNodeList ParenthesizedKeyValueOptionCommaList() : { final Span s; final List list = new ArrayList(); } { { s = span(); } KeyValueOption(list) ( KeyValueOption(list) )* { return new SqlNodeList(list, s.end(this)); } } /** * Parses an option with format key=val whose key is a simple identifier or string literal * and value is a string literal. */ void KeyValueOption(List list) : { final SqlNode key; final SqlNode value; } { ( key = SimpleIdentifier() | key = StringLiteral() ) value = StringLiteral() { list.add(key); list.add(value); } } /** * Parses an option value, it's either a string or a numeric. */ SqlNode OptionValue() : { final SqlNode value; } { ( value = NumericLiteral() | value = StringLiteral() ) { return value; } } /** * Parses a literal list separated by comma. The literal is either a string or a numeric. */ SqlNodeList ParenthesizedLiteralOptionCommaList() : { final Span s; final List list = new ArrayList(); SqlNode optionVal; } { { s = span(); } optionVal = OptionValue() { list.add(optionVal); } ( optionVal = OptionValue() { list.add(optionVal); } )* { return new SqlNodeList(list, s.end(this)); } } void CommaSeparatedSqlHints(List hints) : { SqlIdentifier hintName; SqlNodeList hintOptions; SqlNode optionVal; SqlHint.HintOptionFormat optionFormat; } { hintName = SimpleIdentifier() ( LOOKAHEAD(5) hintOptions = ParenthesizedKeyValueOptionCommaList() { optionFormat = SqlHint.HintOptionFormat.KV_LIST; } | LOOKAHEAD(3) hintOptions = ParenthesizedSimpleIdentifierList() { optionFormat = SqlHint.HintOptionFormat.ID_LIST; } | LOOKAHEAD(3) hintOptions = ParenthesizedLiteralOptionCommaList() { optionFormat = SqlHint.HintOptionFormat.LITERAL_LIST; } | LOOKAHEAD(2) [ ] { hintOptions = SqlNodeList.EMPTY; optionFormat = SqlHint.HintOptionFormat.EMPTY; } ) { hints.add(new SqlHint(Span.of(hintOptions).end(this), hintName, hintOptions, optionFormat)); } ( hintName = SimpleIdentifier() ( LOOKAHEAD(5) hintOptions = ParenthesizedKeyValueOptionCommaList() { optionFormat = SqlHint.HintOptionFormat.KV_LIST; } | LOOKAHEAD(3) hintOptions = ParenthesizedSimpleIdentifierList() { optionFormat = SqlHint.HintOptionFormat.ID_LIST; } | LOOKAHEAD(3) hintOptions = ParenthesizedLiteralOptionCommaList() { optionFormat = SqlHint.HintOptionFormat.LITERAL_LIST; } | LOOKAHEAD(2) [ ] { hintOptions = SqlNodeList.EMPTY; optionFormat = SqlHint.HintOptionFormat.EMPTY; } ) { hints.add(new SqlHint(Span.of(hintOptions).end(this), hintName, hintOptions, optionFormat)); } )* } /** * Parses a table reference with optional hints. */ SqlNode TableRefWithHintsOpt() : { SqlNode tableRef; SqlNodeList hintList; final List hints = new ArrayList(); final Span s; } { { s = span(); } tableRef = CompoundTableIdentifier() [ LOOKAHEAD(2) CommaSeparatedSqlHints(hints) { hintList = new SqlNodeList(hints, s.addAll(hints).end(this)); tableRef = new SqlTableRef(Span.of(tableRef, hintList).pos(), (SqlIdentifier) tableRef, hintList); } ] { return tableRef; } } /** * Parses a leaf SELECT expression without ORDER BY. */ SqlSelect SqlSelect() : { final List keywords = new ArrayList(); final SqlLiteral keyword; final SqlNodeList keywordList; List selectList; final SqlNode fromClause; final SqlNode where; final SqlNodeList groupBy; final SqlNode having; final SqlNodeList windowDecls; final List hints = new ArrayList(); final Span s; } {