All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nom.tam.fits.compression.algorithm.hcompress.HDecompress Maven / Gradle / Ivy

Go to download

Java library for reading and writing FITS files. FITS, the Flexible Image Transport System, is the format commonly used in the archiving and transport of astronomical data.

There is a newer version: 1.20.2
Show newest version
package nom.tam.fits.compression.algorithm.hcompress;

/*
 * #%L
 * nom.tam FITS library
 * %%
 * Copyright (C) 1996 - 2015 nom-tam-fits
 * %%
 * This is free and unencumbered software released into the public domain.
 * 
 * Anyone is free to copy, modify, publish, use, compile, sell, or
 * distribute this software, either in source code form or as a compiled
 * binary, for any purpose, commercial or non-commercial, and by any
 * means.
 * 
 * In jurisdictions that recognize copyright laws, the author or authors
 * of this software dedicate any and all copyright interest in the
 * software to the public domain. We make this dedication for the benefit
 * of the public at large and to the detriment of our heirs and
 * successors. We intend this dedication to be an overt act of
 * relinquishment in perpetuity of all present and future rights to this
 * software under copyright law.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 * #L%
 */

import static nom.tam.fits.compression.algorithm.hcompress.HCompress.BITS_OF_1_BYTE;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.BITS_OF_1_NYBBLE;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.BYTE_MASK;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.NYBBLE_MASK;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.ROUNDING_HALF;

import java.nio.ByteBuffer;

/**
 * The original decompression code was written by R. White at the STScI and
 * included (ported to c and adapted) in cfitsio by William Pence, NASA/GSFC.
 * That code was then ported to java by R. van Nieuwenhoven. Later it was
 * massively refactored to harmonize the different compression algorithms and
 * reduce the duplicate code pieces without obscuring the algorithm itself as
 * far as possible. The original site for the algorithm is
 *
 * 
 *  @see http://www.stsci.edu/software/hcompress.html
 * 
* * @author Richard White * @author William Pence * @author Richard van Nieuwenhoven */ public class HDecompress { private static class LongArrayPointer { private final long[] a; private int offset; LongArrayPointer(long[] tmp) { this.a = tmp; this.offset = 0; } public void bitOr(int i, long planeVal) { this.a[this.offset + i] |= planeVal; } public LongArrayPointer copy(int extraOffset) { LongArrayPointer intAP = new LongArrayPointer(this.a); intAP.offset = this.offset + extraOffset; return intAP; } public long get() { return this.a[this.offset]; } public long get(int i) { return this.a[this.offset + i]; } public void set(int i, long value) { this.a[this.offset + i] = value; } public void set(long value) { this.a[this.offset] = value; } } private static final byte[] CODE_MAGIC = { (byte) 0xDD, (byte) 0x99 }; private static final int[] MASKS = { 0, 1, 3, 7, 15, 31, 63, 127, 255 }; private static final byte ZERO = 0; private static final byte BIT_ONE = 1; private static final byte BIT_TWO = 2; private static final byte BIT_THREE = 4; private static final byte BIT_FOUR = 8; /** * these N constants are obscuring the algorithm and should get some * explaining javadoc if somebody understands the algorithm. */ private static final int N03 = 3; private static final int N04 = 4; private static final int N05 = 5; private static final int N06 = 6; private static final int N07 = 7; private static final int N08 = 8; private static final int N09 = 9; private static final int N10 = 10; private static final int N11 = 11; private static final int N12 = 12; private static final int N13 = 13; private static final int N14 = 14; private static final int N15 = 15; private static final int N26 = 26; private static final int N27 = 27; private static final int N28 = 28; private static final int N29 = 29; private static final int N30 = 30; private static final int N31 = 31; private static final int N62 = 62; private static final int N63 = 63; /** * Number of bits still in buffer */ private int bitsToGo; /** Bits waiting to be input */ private int buffer2; private int nx; private int ny; private int scale; /** * log2n is log2 of max(nx,ny) rounded up to next power of 2 */ private int calculateLog2N(int nmax) { int log2n; log2n = (int) (Math.log(nmax) / Math.log(2.0) + ROUNDING_HALF); if (nmax > 1 << log2n) { log2n += 1; } return log2n; } /** * char *infile; input file long *a; address of output tiledImageOperation * [nx][ny] int *nx,*ny; size of output tiledImageOperation int *scale; * scale factor for digitization * * @param infile * @param a */ private void decode64(ByteBuffer infile, LongArrayPointer a) { byte[] nbitplanes = new byte[N03]; byte[] tmagic = new byte[2]; /* * File starts either with special 2-byte magic code or with FITS * keyword "SIMPLE =" */ infile.get(tmagic); /* * check for correct magic code value */ if (tmagic[0] != CODE_MAGIC[0] || tmagic[1] != CODE_MAGIC[1]) { throw new RuntimeException("Compression error"); } this.nx = infile.getInt(); /* x size of image */ this.ny = infile.getInt(); /* y size of image */ this.scale = infile.getInt(); /* scale factor for digitization */ /* sum of all pixels */ long sumall = infile.getLong(); /* # bits in quadrants */ infile.get(nbitplanes); dodecode64(infile, a, nbitplanes); /* * put sum of all pixels back into pixel 0 */ a.set(0, sumall); } /** * decompress the input byte stream using the H-compress algorithm input - * input tiledImageOperation of compressed bytes a - pre-allocated * tiledImageOperation to hold the output uncompressed image nx - returned X * axis size ny - returned Y axis size NOTE: the nx and ny dimensions as * defined within this code are reversed from the usual FITS notation. ny is * the fastest varying dimension, which is usually considered the X axis in * the FITS image display * * @param input * the input buffer to decompress * @param smooth * should the image be smoothed * @param aa * the resulting long tiledImageOperation */ public void decompress(ByteBuffer input, boolean smooth, long[] aa) { LongArrayPointer a = new LongArrayPointer(aa); /* decode the input tiledImageOperation */ decode64(input, a); /* * Un-Digitize */ undigitize64(a); /* * Inverse H-transform */ hinv64(a, smooth); } /** * long a[]; int nx,ny; Array dimensions are [nx][ny] unsigned char * nbitplanes[3]; Number of bit planes in quadrants */ private int dodecode64(ByteBuffer infile, LongArrayPointer a, byte[] nbitplanes) { int nel = this.nx * this.ny; int nx2 = (this.nx + 1) / 2; int ny2 = (this.ny + 1) / 2; /* * initialize a to zero */ for (int i = 0; i < nel; i++) { a.set(i, 0); } /* * Initialize bit input */ startInputingBits(); /* * read bit planes for each quadrant */ qtreeDecode64(infile, a.copy(0), this.ny, nx2, ny2, nbitplanes[0]); qtreeDecode64(infile, a.copy(ny2), this.ny, nx2, this.ny / 2, nbitplanes[1]); qtreeDecode64(infile, a.copy(this.ny * nx2), this.ny, this.nx / 2, ny2, nbitplanes[1]); qtreeDecode64(infile, a.copy(this.ny * nx2 + ny2), this.ny, this.nx / 2, this.ny / 2, nbitplanes[2]); /* * make sure there is an EOF symbol (nybble=0) at end */ if (inputNybble(infile) != 0) { throw new RuntimeException("Compression error"); } /* * now get the sign bits Re-initialize bit input */ startInputingBits(); for (int i = 0; i < nel; i++) { if (a.get(i) != 0) { if (inputBit(infile) != 0) { a.set(i, -a.get(i)); } } } return 0; } /** * int smooth; 0 for no smoothing, else smooth during inversion int scale; * used if smoothing is specified */ private int hinv64(LongArrayPointer a, boolean smooth) { int nmax = this.nx > this.ny ? this.nx : this.ny; int log2n = calculateLog2N(nmax); // get temporary storage for shuffling elements long[] tmp = new long[(nmax + 1) / 2]; // set up masks, rounding parameters int shift = 1; long bit0 = (long) 1 << log2n - 1; long bit1 = bit0 << 1; long bit2 = bit0 << 2; long mask0 = -bit0; long mask1 = mask0 << 1; long mask2 = mask0 << 2; long prnd0 = bit0 >> 1; long prnd1 = bit1 >> 1; long prnd2 = bit2 >> 1; long nrnd0 = prnd0 - 1; long nrnd1 = prnd1 - 1; long nrnd2 = prnd2 - 1; // round h0 to multiple of bit2 a.set(0, a.get(0) + (a.get(0) >= 0 ? prnd2 : nrnd2) & mask2); // do log2n expansions We're indexing a as a 2-D tiledImageOperation // with dimensions // (nx,ny). int nxtop = 1; int nytop = 1; int nxf = this.nx; int nyf = this.ny; int c = 1 << log2n; int i; for (int k = log2n - 1; k >= 0; k--) { // this somewhat cryptic code generates the sequence ntop[k-1] = // (ntop[k]+1)/2, where ntop[log2n] = n c = c >> 1; nxtop = nxtop << 1; nytop = nytop << 1; if (nxf <= c) { nxtop -= 1; } else { nxf -= c; } if (nyf <= c) { nytop -= 1; } else { nyf -= c; } // double shift and fix nrnd0 (because prnd0=0) on last pass if (k == 0) { nrnd0 = 0; shift = 2; } // unshuffle in each dimension to interleave coefficients for (i = 0; i < nxtop; i++) { unshuffle64(a.copy(this.ny * i), nytop, 1, tmp); } for (int j = 0; j < nytop; j++) { unshuffle64(a.copy(j), nxtop, this.ny, tmp); } // smooth by interpolating coefficients if SMOOTH != 0 if (smooth) { hsmooth64(a, nxtop, nytop); } int oddx = nxtop % 2; int oddy = nytop % 2; for (i = 0; i < nxtop - oddx; i += 2) { int s00 = this.ny * i; /* s00 is index of a[i,j] */ int s10 = s00 + this.ny; /* s10 is index of a[i+1,j] */ for (int j = 0; j < nytop - oddy; j += 2) { long h0 = a.get(s00); long hx = a.get(s10); long hy = a.get(s00 + 1); long hc = a.get(s10 + 1); // round hx and hy to multiple of bit1, hc to multiple of // bit0 h0 is already a multiple of bit2 hx = hx + (hx >= 0 ? prnd1 : nrnd1) & mask1; hy = hy + (hy >= 0 ? prnd1 : nrnd1) & mask1; hc = hc + (hc >= 0 ? prnd0 : nrnd0) & mask0; // propagate bit0 of hc to hx,hy long lowbit0 = hc & bit0; hx = hx >= 0 ? hx - lowbit0 : hx + lowbit0; hy = hy >= 0 ? hy - lowbit0 : hy + lowbit0; // Propagate bits 0 and 1 of hc,hx,hy to h0. This could be // simplified if we assume h0>0, but then the inversion // would not be lossless for images with negative pixels. long lowbit1 = (hc ^ hx ^ hy) & bit1; h0 = h0 >= 0 ? h0 + lowbit0 - lowbit1 : h0 + (lowbit0 == 0 ? lowbit1 : lowbit0 - lowbit1); // Divide sums by 2 (4 last time) a.set(s10 + 1, h0 + hx + hy + hc >> shift); a.set(s10, h0 + hx - hy - hc >> shift); a.set(s00 + 1, h0 - hx + hy - hc >> shift); a.set(s00, h0 - hx - hy + hc >> shift); s00 += 2; s10 += 2; } if (oddy != 0) { // do last element in row if row length is odd s00+1, s10+1 // are off edge long h0 = a.get(s00); long hx = a.get(s10); hx = (hx >= 0 ? hx + prnd1 : hx + nrnd1) & mask1; long lowbit1 = hx & bit1; h0 = h0 >= 0 ? h0 - lowbit1 : h0 + lowbit1; a.set(s10, h0 + hx >> shift); a.set(s00, h0 - hx >> shift); } } if (oddx != 0) { // do last row if column length is odd s10, s10+1 are off edge int s00 = this.ny * i; for (int j = 0; j < nytop - oddy; j += 2) { long h0 = a.get(s00); long hy = a.get(s00 + 1); hy = (hy >= 0 ? hy + prnd1 : hy + nrnd1) & mask1; long lowbit1 = hy & bit1; h0 = h0 >= 0 ? h0 - lowbit1 : h0 + lowbit1; a.set(s00 + 1, h0 + hy >> shift); a.set(s00, h0 - hy >> shift); s00 += 2; } if (oddy != 0) { // do corner element if both row and column lengths are odd // s00+1, s10, s10+1 are off edge long h0 = a.get(s00); a.set(s00, h0 >> shift); } } // divide all the masks and rounding values by 2 bit1 = bit0; bit0 = bit0 >> 1; mask1 = mask0; mask0 = mask0 >> 1; prnd1 = prnd0; prnd0 = prnd0 >> 1; nrnd1 = nrnd0; nrnd0 = prnd0 - 1; } return 0; } /** * long a[]; tiledImageOperation of H-transform coefficients int * nxtop,nytop; size of coefficient block to use int ny; actual 1st * dimension of tiledImageOperation int scale; truncation scale factor that * was used */ private void hsmooth64(LongArrayPointer a, int nxtop, int nytop) { int i, j; int ny2, s10, s00; long hm, h0, hp, hmm, hpm, hmp, hpp, hx2, hy2, diff, dmax, dmin, s, smax, m1, m2; /* * Maximum change in coefficients is determined by scale factor. Since * we rounded during division (see digitize.c), the biggest permitted * change is scale/2. */ smax = this.scale >> 1; if (smax <= 0) { return; } ny2 = this.ny << 1; /* * We're indexing a as a 2-D tiledImageOperation with dimensions * (nxtop,ny) of which only (nxtop,nytop) are used. The coefficients on * the edge of the tiledImageOperation are not adjusted (which is why * the loops below start at 2 instead of 0 and end at nxtop-2 instead of * nxtop.) */ /* * Adjust x difference hx */ for (i = 2; i < nxtop - 2; i += 2) { s00 = this.ny * i; /* s00 is index of a[i,j] */ s10 = s00 + this.ny; /* s10 is index of a[i+1,j] */ for (j = 0; j < nytop; j += 2) { /* * hp is h0 (mean value) in next x zone, hm is h0 in previous x * zone */ hm = a.get(s00 - ny2); h0 = a.get(s00); hp = a.get(s00 + ny2); /* * diff = 8 * hx slope that would match h0 in neighboring zones */ diff = hp - hm; /* * monotonicity constraints on diff */ dmax = Math.max(Math.min(hp - h0, h0 - hm), 0) << 2; dmin = Math.min(Math.max(hp - h0, h0 - hm), 0) << 2; /* * if monotonicity would set slope = 0 then don't change hx. * note dmax>=0, dmin<=0. */ if (dmin < dmax) { diff = Math.max(Math.min(diff, dmax), dmin); /* * Compute change in slope limited to range +/- smax. * Careful with rounding negative numbers when using shift * for divide by 8. */ s = diff - (a.get(s10) << N03); s = s >= 0 ? s >> N03 : s + N07 >> N03; s = Math.max(Math.min(s, smax), -smax); a.set(s10, a.get(s10) + s); } s00 += 2; s10 += 2; } } /* * Adjust y difference hy */ for (i = 0; i < nxtop; i += 2) { s00 = this.ny * i + 2; s10 = s00 + this.ny; for (j = 2; j < nytop - 2; j += 2) { hm = a.get(s00 - 2); h0 = a.get(s00); hp = a.get(s00 + 2); diff = hp - hm; dmax = Math.max(Math.min(hp - h0, h0 - hm), 0) << 2; dmin = Math.min(Math.max(hp - h0, h0 - hm), 0) << 2; if (dmin < dmax) { diff = Math.max(Math.min(diff, dmax), dmin); s = diff - (a.get(s00 + 1) << N03); s = s >= 0 ? s >> N03 : s + N07 >> N03; s = Math.max(Math.min(s, smax), -smax); a.set(s00 + 1, a.get(s00 + 1) + s); } s00 += 2; s10 += 2; } } /* * Adjust curvature difference hc */ for (i = 2; i < nxtop - 2; i += 2) { s00 = this.ny * i + 2; s10 = s00 + this.ny; for (j = 2; j < nytop - 2; j += 2) { /* * ------------------ y | hmp | | hpp | | ------------------ | | * | h0 | | | ------------------ -------x | hmm | | hpm | * ------------------ */ hmm = a.get(s00 - ny2 - 2); hpm = a.get(s00 + ny2 - 2); hmp = a.get(s00 - ny2 + 2); hpp = a.get(s00 + ny2 + 2); h0 = a.get(s00); /* * diff = 64 * hc value that would match h0 in neighboring zones */ diff = hpp + hmm - hmp - hpm; /* * 2 times x,y slopes in this zone */ hx2 = a.get(s10) << 1; hy2 = a.get(s00 + 1) << 1; /* * monotonicity constraints on diff */ m1 = Math.min(Math.max(hpp - h0, 0) - hx2 - hy2, Math.max(h0 - hpm, 0) + hx2 - hy2); m2 = Math.min(Math.max(h0 - hmp, 0) - hx2 + hy2, Math.max(hmm - h0, 0) + hx2 + hy2); dmax = Math.min(m1, m2) << BITS_OF_1_NYBBLE; m1 = Math.max(Math.min(hpp - h0, 0) - hx2 - hy2, Math.min(h0 - hpm, 0) + hx2 - hy2); m2 = Math.max(Math.min(h0 - hmp, 0) - hx2 + hy2, Math.min(hmm - h0, 0) + hx2 + hy2); dmin = Math.max(m1, m2) << BITS_OF_1_NYBBLE; /* * if monotonicity would set slope = 0 then don't change hc. * note dmax>=0, dmin<=0. */ if (dmin < dmax) { diff = Math.max(Math.min(diff, dmax), dmin); /* * Compute change in slope limited to range +/- smax. * Careful with rounding negative numbers when using shift * for divide by 64. */ s = diff - (a.get(s10 + 1) << N06); s = s >= 0 ? s >> N06 : s + N63 >> N06; s = Math.max(Math.min(s, smax), -smax); a.set(s10 + 1, a.get(s10 + 1) + s); } s00 += 2; s10 += 2; } } } private int inputBit(ByteBuffer infile) { if (this.bitsToGo == 0) { /* Read the next byte if no */ this.buffer2 = infile.get() & BYTE_MASK; this.bitsToGo = BITS_OF_1_BYTE; } /* * Return the next bit */ this.bitsToGo -= 1; return this.buffer2 >> this.bitsToGo & 1; } /* * Huffman decoding for fixed codes Coded values range from 0-15 Huffman * code values (hex): 3e, 00, 01, 08, 02, 09, 1a, 1b, 03, 1c, 0a, 1d, 0b, * 1e, 3f, 0c and number of bits in each code: 6, 3, 3, 4, 3, 4, 5, 5, 3, 5, * 4, 5, 4, 5, 6, 4 */ private int inputHuffman(ByteBuffer infile) { int c; /* * get first 3 bits to start */ c = inputNbits(infile, N03); if (c < N04) { /* * this is all we need return 1,2,4,8 for c=0,1,2,3 */ return 1 << c; } /* * get the next bit */ c = inputBit(infile) | c << 1; if (c < N13) { /* * OK, 4 bits is enough */ switch (c) { case N08: return N03; case N09: return N05; case N10: return N10; case N11: return N12; case N12: return N15; default: } } /* * get yet another bit */ c = inputBit(infile) | c << 1; if (c < N31) { /* * OK, 5 bits is enough */ switch (c) { case N26: return N06; case N27: return N07; case N28: return N09; case N29: return N11; case N30: return N13; default: } } /* * need the 6th bit */ c = inputBit(infile) | c << 1; if (c == N62) { return 0; } else { return N14; } } private int inputNbits(ByteBuffer infile, int n) { if (this.bitsToGo < n) { /* * need another byte's worth of bits */ this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK; this.bitsToGo += BITS_OF_1_BYTE; } /* * now pick off the first n bits */ this.bitsToGo -= n; /* there was a slight gain in speed by replacing the following line */ /* return( (buffer2>>bits_to_go) & ((1<> this.bitsToGo & MASKS[n]; } /* INITIALIZE BIT INPUT */ private int inputNnybble(ByteBuffer infile, int n, byte[] array) { /* * copy n 4-bit nybbles from infile to the lower 4 bits of * tiledImageOperation */ int ii, kk, shift1, shift2; /* * forcing byte alignment doesn;t help, and even makes it go slightly * slower if (bits_to_go != 8) input_nbits(infile, bits_to_go); */ if (n == 1) { array[0] = (byte) inputNybble(infile); return 0; } if (this.bitsToGo == BITS_OF_1_BYTE) { /* * already have 2 full nybbles in buffer2, so backspace the infile * tiledImageOperation to reuse last char */ infile.position(infile.position() - 1); this.bitsToGo = 0; } /* bits_to_go now has a value in the range 0 - 7. After adding */ /* another byte, bits_to_go effectively will be in range 8 - 15 */ shift1 = this.bitsToGo + BITS_OF_1_NYBBLE; /* * shift1 will be in range 4 * - 11 */ shift2 = this.bitsToGo; /* shift2 will be in range 0 - 7 */ kk = 0; /* special case */ if (this.bitsToGo == 0) { for (ii = 0; ii < n / 2; ii++) { /* * refill the buffer with next byte */ this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK; array[kk] = (byte) (this.buffer2 >> BITS_OF_1_NYBBLE & NYBBLE_MASK); array[kk + 1] = (byte) (this.buffer2 & NYBBLE_MASK); /* * no shift * required */ kk += 2; } } else { for (ii = 0; ii < n / 2; ii++) { /* * refill the buffer with next byte */ this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK; array[kk] = (byte) (this.buffer2 >> shift1 & NYBBLE_MASK); array[kk + 1] = (byte) (this.buffer2 >> shift2 & NYBBLE_MASK); kk += 2; } } if (ii * 2 != n) { /* have to read last odd byte */ array[n - 1] = (byte) inputNybble(infile); } return this.buffer2 >> this.bitsToGo & NYBBLE_MASK; } private int inputNybble(ByteBuffer infile) { if (this.bitsToGo < BITS_OF_1_NYBBLE) { /* * need another byte's worth of bits */ this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK; this.bitsToGo += BITS_OF_1_BYTE; } /* * now pick off the first 4 bits */ this.bitsToGo -= BITS_OF_1_NYBBLE; return this.buffer2 >> this.bitsToGo & NYBBLE_MASK; } /** * Copy 4-bit values from a[(nx+1)/2,(ny+1)/2] to b[nx,ny], expanding each * value to 2x2 pixels and inserting into bitplane BIT of B. A,B may NOT be * same tiledImageOperation (it wouldn't make sense to be inserting bits * into the same tiledImageOperation anyway.) */ private void qtreeBitins64(byte[] a, int lnx, int lny, LongArrayPointer b, int n, int bit) { int i, j, s00; long planeVal = 1L << bit; // expand each 2x2 block ByteBuffer k = ByteBuffer.wrap(a); /* k is index of a[i/2,j/2] */ for (i = 0; i < lnx - 1; i += 2) { s00 = n * i; /* s00 is index of b[i,j] */ // Note: this code appears to run very slightly faster on a 32-bit // linux machine using s00+n rather than the s10 intermediate // variable // s10 = s00+n; *//* s10 is index of b[i+1,j] for (j = 0; j < lny - 1; j += 2) { byte value = k.get(); if ((value & BIT_ONE) != ZERO) { b.bitOr(s00 + n + 1, planeVal); } if ((value & BIT_TWO) != ZERO) { b.bitOr(s00 + n, planeVal); } if ((value & BIT_THREE) != ZERO) { b.bitOr(s00 + 1, planeVal); } if ((value & BIT_FOUR) != ZERO) { b.bitOr(s00, planeVal); } // b.bitOr(s10+1, ((LONGLONG) ( a[k] & 1)) << bit; b.bitOr(s10 , // ((((LONGLONG)a[k])>>1) & 1) << bit; b.bitOr(s00+1, // ((((LONGLONG)a[k])>>2) & 1) << bit; b.bitOr(s00 // ,((((LONGLONG)a[k])>>3) & 1) << bit; s00 += 2; /* s10 += 2; */ } if (j < lny) { // row size is odd, do last element in row s00+1, s10+1 are off // edge byte value = k.get(); if ((value & BIT_TWO) != ZERO) { b.bitOr(s00 + n, planeVal); } if ((value & BIT_FOUR) != ZERO) { b.bitOr(s00, planeVal); } // b.bitOr(s10 , ((((LONGLONG)a[k])>>1) & 1) << bit; b.bitOr(s00 // , ((((LONGLONG)a[k])>>3) & 1) << bit; } } if (i < lnx) { // column size is odd, do last row s10, s10+1 are off edge s00 = n * i; for (j = 0; j < lny - 1; j += 2) { byte value = k.get(); if ((value & BIT_THREE) != ZERO) { b.bitOr(s00 + 1, planeVal); } if ((value & BIT_FOUR) != ZERO) { b.bitOr(s00, planeVal); } // b.bitOr(s00+1, ((((LONGLONG)a[k])>>2) & 1) << bit; // b.bitOr(s00 , ((((LONGLONG)a[k])>>3) & 1) << bit; s00 += 2; } if (j < lny) { // both row and column size are odd, do corner element s00+1, // s10, s10+1 are off edge if ((k.get() & BIT_FOUR) != ZERO) { b.bitOr(s00, planeVal); } // b.bitOr(s00 , ((((LONGLONG)a[k])>>3) & 1) << bit; } } } /** * copy 4-bit values from a[(nx+1)/2,(ny+1)/2] to b[nx,ny], expanding each * value to 2x2 pixels a,b may be same tiledImageOperation */ private void qtreeCopy(byte[] a, int lnx, int lny, byte[] b, int n) { int i, j, k, nx2, ny2; int s00, s10; // first copy 4-bit values to b start at end in case a,b are same // tiledImageOperation nx2 = (lnx + 1) / 2; ny2 = (lny + 1) / 2; k = ny2 * (nx2 - 1) + ny2 - 1; /* k is index of a[i,j] */ for (i = nx2 - 1; i >= 0; i--) { s00 = 2 * (n * i + ny2 - 1); /* s00 is index of b[2*i,2*j] */ for (j = ny2 - 1; j >= 0; j--) { b[s00] = a[k]; k -= 1; s00 -= 2; } } for (i = 0; i < lnx - 1; i += 2) { // now expand each 2x2 block // Note: Unlike the case in qtree_bitins, this code runs faster on a // 32-bit linux machine using the s10 intermediate variable, rather // that using s00+n. Go figure! s00 = n * i; // s00 is index of b[i,j] s10 = s00 + n; // s10 is index of b[i+1,j] for (j = 0; j < lny - 1; j += 2) { b[s10 + 1] = (b[s00] & BIT_ONE) == ZERO ? ZERO : BIT_ONE; b[s10] = (b[s00] & BIT_TWO) == ZERO ? ZERO : BIT_ONE; b[s00 + 1] = (b[s00] & BIT_THREE) == ZERO ? ZERO : BIT_ONE; b[s00] = (b[s00] & BIT_FOUR) == ZERO ? ZERO : BIT_ONE; s00 += 2; s10 += 2; } if (j < lny) { // row size is odd, do last element in row s00+1, s10+1 are off // edge not worth converting this to use 16 case statements b[s10] = (byte) (b[s00] >> 1 & 1); b[s00] = (byte) (b[s00] >> N03 & 1); } } if (i < lnx) { // column size is odd, do last row s10, s10+1 are off edge s00 = n * i; for (j = 0; j < lny - 1; j += 2) { // not worth converting this to use 16 case statements b[s00 + 1] = (byte) (b[s00] >> 2 & 1); b[s00] = (byte) (b[s00] >> N03 & 1); s00 += 2; } if (j < lny) { // both row and column size are odd, do corner element s00+1, // s10, s10+1 are off edge not worth converting this to use 16 // case statements b[s00] = (byte) (b[s00] >> N03 & 1); } } } /** * char *infile; long a[]; a is 2-D tiledImageOperation with dimensions * (n,n) int n; length of full row in a int nqx; partial length of row to * decode int nqy; partial length of column (<=n) int nbitplanes; number of * bitplanes to decode */ private int qtreeDecode64(ByteBuffer infile, LongArrayPointer a, int n, int nqx, int nqy, int nbitplanes) { int k, bit, b; int nx2, ny2, nfx, nfy, c; byte[] scratch; /* * log2n is log2 of max(nqx,nqy) rounded up to next power of 2 */ int nqmax = nqx > nqy ? nqx : nqy; int log2n = calculateLog2N(nqmax); /* * allocate scratch tiledImageOperation for working space */ int nqx2 = (nqx + 1) / 2; int nqy2 = (nqy + 1) / 2; scratch = new byte[nqx2 * nqy2]; /* * now decode each bit plane, starting at the top A is assumed to be * initialized to zero */ for (bit = nbitplanes - 1; bit >= 0; bit--) { /* * Was bitplane was quadtree-coded or written directly? */ b = inputNybble(infile); if (b == 0) { /* * bit map was written directly */ readBdirect64(infile, a, n, nqx, nqy, scratch, bit); } else if (b != NYBBLE_MASK) { throw new RuntimeException("Compression error"); } else { /* * bitmap was quadtree-coded, do log2n expansions read first * code */ scratch[0] = (byte) inputHuffman(infile); /* * now do log2n expansions, reading codes from file as necessary */ nx2 = 1; ny2 = 1; nfx = nqx; nfy = nqy; c = 1 << log2n; for (k = 1; k < log2n; k++) { /* * this somewhat cryptic code generates the sequence n[k-1] * = (n[k]+1)/2 where n[log2n]=nqx or nqy */ c = c >> 1; nx2 = nx2 << 1; ny2 = ny2 << 1; if (nfx <= c) { nx2 -= 1; } else { nfx -= c; } if (nfy <= c) { ny2 -= 1; } else { nfy -= c; } qtreeExpand(infile, scratch, nx2, ny2, scratch); } /* * now copy last set of 4-bit codes to bitplane bit of * tiledImageOperation a */ qtreeBitins64(scratch, nqx, nqy, a, n, bit); } } return 0; } /* * do one quadtree expansion step on tiledImageOperation * a[(nqx+1)/2,(nqy+1)/2] results put into b[nqx,nqy] (which may be the same * as a) */ private void qtreeExpand(ByteBuffer infile, byte[] a, int nx2, int ny2, byte[] b) { int i; /* * first copy a to b, expanding each 4-bit value */ qtreeCopy(a, nx2, ny2, b, ny2); /* * now read new 4-bit values into b for each non-zero element */ for (i = nx2 * ny2 - 1; i >= 0; i--) { if (b[i] != 0) { b[i] = (byte) inputHuffman(infile); } } } private void readBdirect64(ByteBuffer infile, LongArrayPointer a, int n, int nqx, int nqy, byte[] scratch, int bit) { /* * read bit image packed 4 pixels/nybble */ /* * int i; for (i = 0; i < ((nqx+1)/2) * ((nqy+1)/2); i++) { scratch[i] = * input_nybble(infile); } */ inputNnybble(infile, (nqx + 1) / 2 * ((nqy + 1) / 2), scratch); /* * insert in bitplane BIT of image A */ qtreeBitins64(scratch, nqx, nqy, a, n, bit); } /* * ########################################################################## * ## */ private void startInputingBits() { /* * Buffer starts out with no bits in it */ this.bitsToGo = 0; } private void undigitize64(LongArrayPointer a) { long scale64; /* * multiply by scale */ if (this.scale <= 1) { return; } scale64 = this.scale; /* * use a 64-bit int for efficiency in the big loop */ for (int index = 0; index < a.a.length; index++) { a.a[index] = a.a[index] * scale64; } } /** * long a[]; tiledImageOperation to shuffle int n; number of elements to * shuffle int n2; second dimension long tmp[]; scratch storage */ private void unshuffle64(LongArrayPointer a, int n, int n2, long[] tmp) { int i; int nhalf; LongArrayPointer p1, p2, pt; /* * copy 2nd half of tiledImageOperation to tmp */ nhalf = n + 1 >> 1; pt = new LongArrayPointer(tmp); p1 = a.copy(n2 * nhalf); /* pointer to a[i] */ for (i = nhalf; i < n; i++) { pt.set(p1.get()); p1.offset += n2; pt.offset += 1; } /* * distribute 1st half of tiledImageOperation to even elements */ p2 = a.copy(n2 * (nhalf - 1)); /* pointer to a[i] */ p1 = a.copy(n2 * (nhalf - 1) << 1); /* pointer to a[2*i] */ for (i = nhalf - 1; i >= 0; i--) { p1.set(p2.get()); p2.offset -= n2; p1.offset -= n2 + n2; } /* * now distribute 2nd half of tiledImageOperation (in tmp) to odd * elements */ pt = new LongArrayPointer(tmp); p1 = a.copy(n2); /* pointer to a[i] */ for (i = 1; i < n; i += 2) { p1.set(pt.get()); p1.offset += n2 + n2; pt.offset += 1; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy