nom.tam.fits.compression.algorithm.hcompress.HDecompress Maven / Gradle / Ivy
package nom.tam.fits.compression.algorithm.hcompress;
/*
* #%L
* nom.tam FITS library
* %%
* Copyright (C) 1996 - 2015 nom-tam-fits
* %%
* This is free and unencumbered software released into the public domain.
*
* Anyone is free to copy, modify, publish, use, compile, sell, or
* distribute this software, either in source code form or as a compiled
* binary, for any purpose, commercial or non-commercial, and by any
* means.
*
* In jurisdictions that recognize copyright laws, the author or authors
* of this software dedicate any and all copyright interest in the
* software to the public domain. We make this dedication for the benefit
* of the public at large and to the detriment of our heirs and
* successors. We intend this dedication to be an overt act of
* relinquishment in perpetuity of all present and future rights to this
* software under copyright law.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
* #L%
*/
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.BITS_OF_1_BYTE;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.BITS_OF_1_NYBBLE;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.BYTE_MASK;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.NYBBLE_MASK;
import static nom.tam.fits.compression.algorithm.hcompress.HCompress.ROUNDING_HALF;
import java.nio.ByteBuffer;
/**
* The original decompression code was written by R. White at the STScI and
* included (ported to c and adapted) in cfitsio by William Pence, NASA/GSFC.
* That code was then ported to java by R. van Nieuwenhoven. Later it was
* massively refactored to harmonize the different compression algorithms and
* reduce the duplicate code pieces without obscuring the algorithm itself as
* far as possible. The original site for the algorithm is
*
*
* @see http://www.stsci.edu/software/hcompress.html
*
*
* @author Richard White
* @author William Pence
* @author Richard van Nieuwenhoven
*/
public class HDecompress {
private static class LongArrayPointer {
private final long[] a;
private int offset;
LongArrayPointer(long[] tmp) {
this.a = tmp;
this.offset = 0;
}
public void bitOr(int i, long planeVal) {
this.a[this.offset + i] |= planeVal;
}
public LongArrayPointer copy(int extraOffset) {
LongArrayPointer intAP = new LongArrayPointer(this.a);
intAP.offset = this.offset + extraOffset;
return intAP;
}
public long get() {
return this.a[this.offset];
}
public long get(int i) {
return this.a[this.offset + i];
}
public void set(int i, long value) {
this.a[this.offset + i] = value;
}
public void set(long value) {
this.a[this.offset] = value;
}
}
private static final byte[] CODE_MAGIC = {
(byte) 0xDD,
(byte) 0x99
};
private static final int[] MASKS = {
0,
1,
3,
7,
15,
31,
63,
127,
255
};
private static final byte ZERO = 0;
private static final byte BIT_ONE = 1;
private static final byte BIT_TWO = 2;
private static final byte BIT_THREE = 4;
private static final byte BIT_FOUR = 8;
/**
* these N constants are obscuring the algorithm and should get some
* explaining javadoc if somebody understands the algorithm.
*/
private static final int N03 = 3;
private static final int N04 = 4;
private static final int N05 = 5;
private static final int N06 = 6;
private static final int N07 = 7;
private static final int N08 = 8;
private static final int N09 = 9;
private static final int N10 = 10;
private static final int N11 = 11;
private static final int N12 = 12;
private static final int N13 = 13;
private static final int N14 = 14;
private static final int N15 = 15;
private static final int N26 = 26;
private static final int N27 = 27;
private static final int N28 = 28;
private static final int N29 = 29;
private static final int N30 = 30;
private static final int N31 = 31;
private static final int N62 = 62;
private static final int N63 = 63;
/**
* Number of bits still in buffer
*/
private int bitsToGo;
/** Bits waiting to be input */
private int buffer2;
private int nx;
private int ny;
private int scale;
/**
* log2n is log2 of max(nx,ny) rounded up to next power of 2
*/
private int calculateLog2N(int nmax) {
int log2n;
log2n = (int) (Math.log(nmax) / Math.log(2.0) + ROUNDING_HALF);
if (nmax > 1 << log2n) {
log2n += 1;
}
return log2n;
}
/**
* char *infile; input file long *a; address of output tiledImageOperation
* [nx][ny] int *nx,*ny; size of output tiledImageOperation int *scale;
* scale factor for digitization
*
* @param infile
* @param a
*/
private void decode64(ByteBuffer infile, LongArrayPointer a) {
byte[] nbitplanes = new byte[N03];
byte[] tmagic = new byte[2];
/*
* File starts either with special 2-byte magic code or with FITS
* keyword "SIMPLE ="
*/
infile.get(tmagic);
/*
* check for correct magic code value
*/
if (tmagic[0] != CODE_MAGIC[0] || tmagic[1] != CODE_MAGIC[1]) {
throw new RuntimeException("Compression error");
}
this.nx = infile.getInt(); /* x size of image */
this.ny = infile.getInt(); /* y size of image */
this.scale = infile.getInt(); /* scale factor for digitization */
/* sum of all pixels */
long sumall = infile.getLong();
/* # bits in quadrants */
infile.get(nbitplanes);
dodecode64(infile, a, nbitplanes);
/*
* put sum of all pixels back into pixel 0
*/
a.set(0, sumall);
}
/**
* decompress the input byte stream using the H-compress algorithm input -
* input tiledImageOperation of compressed bytes a - pre-allocated
* tiledImageOperation to hold the output uncompressed image nx - returned X
* axis size ny - returned Y axis size NOTE: the nx and ny dimensions as
* defined within this code are reversed from the usual FITS notation. ny is
* the fastest varying dimension, which is usually considered the X axis in
* the FITS image display
*
* @param input
* the input buffer to decompress
* @param smooth
* should the image be smoothed
* @param aa
* the resulting long tiledImageOperation
*/
public void decompress(ByteBuffer input, boolean smooth, long[] aa) {
LongArrayPointer a = new LongArrayPointer(aa);
/* decode the input tiledImageOperation */
decode64(input, a);
/*
* Un-Digitize
*/
undigitize64(a);
/*
* Inverse H-transform
*/
hinv64(a, smooth);
}
/**
* long a[]; int nx,ny; Array dimensions are [nx][ny] unsigned char
* nbitplanes[3]; Number of bit planes in quadrants
*/
private int dodecode64(ByteBuffer infile, LongArrayPointer a, byte[] nbitplanes) {
int nel = this.nx * this.ny;
int nx2 = (this.nx + 1) / 2;
int ny2 = (this.ny + 1) / 2;
/*
* initialize a to zero
*/
for (int i = 0; i < nel; i++) {
a.set(i, 0);
}
/*
* Initialize bit input
*/
startInputingBits();
/*
* read bit planes for each quadrant
*/
qtreeDecode64(infile, a.copy(0), this.ny, nx2, ny2, nbitplanes[0]);
qtreeDecode64(infile, a.copy(ny2), this.ny, nx2, this.ny / 2, nbitplanes[1]);
qtreeDecode64(infile, a.copy(this.ny * nx2), this.ny, this.nx / 2, ny2, nbitplanes[1]);
qtreeDecode64(infile, a.copy(this.ny * nx2 + ny2), this.ny, this.nx / 2, this.ny / 2, nbitplanes[2]);
/*
* make sure there is an EOF symbol (nybble=0) at end
*/
if (inputNybble(infile) != 0) {
throw new RuntimeException("Compression error");
}
/*
* now get the sign bits Re-initialize bit input
*/
startInputingBits();
for (int i = 0; i < nel; i++) {
if (a.get(i) != 0) {
if (inputBit(infile) != 0) {
a.set(i, -a.get(i));
}
}
}
return 0;
}
/**
* int smooth; 0 for no smoothing, else smooth during inversion int scale;
* used if smoothing is specified
*/
private int hinv64(LongArrayPointer a, boolean smooth) {
int nmax = this.nx > this.ny ? this.nx : this.ny;
int log2n = calculateLog2N(nmax);
// get temporary storage for shuffling elements
long[] tmp = new long[(nmax + 1) / 2];
// set up masks, rounding parameters
int shift = 1;
long bit0 = (long) 1 << log2n - 1;
long bit1 = bit0 << 1;
long bit2 = bit0 << 2;
long mask0 = -bit0;
long mask1 = mask0 << 1;
long mask2 = mask0 << 2;
long prnd0 = bit0 >> 1;
long prnd1 = bit1 >> 1;
long prnd2 = bit2 >> 1;
long nrnd0 = prnd0 - 1;
long nrnd1 = prnd1 - 1;
long nrnd2 = prnd2 - 1;
// round h0 to multiple of bit2
a.set(0, a.get(0) + (a.get(0) >= 0 ? prnd2 : nrnd2) & mask2);
// do log2n expansions We're indexing a as a 2-D tiledImageOperation
// with dimensions
// (nx,ny).
int nxtop = 1;
int nytop = 1;
int nxf = this.nx;
int nyf = this.ny;
int c = 1 << log2n;
int i;
for (int k = log2n - 1; k >= 0; k--) {
// this somewhat cryptic code generates the sequence ntop[k-1] =
// (ntop[k]+1)/2, where ntop[log2n] = n
c = c >> 1;
nxtop = nxtop << 1;
nytop = nytop << 1;
if (nxf <= c) {
nxtop -= 1;
} else {
nxf -= c;
}
if (nyf <= c) {
nytop -= 1;
} else {
nyf -= c;
}
// double shift and fix nrnd0 (because prnd0=0) on last pass
if (k == 0) {
nrnd0 = 0;
shift = 2;
}
// unshuffle in each dimension to interleave coefficients
for (i = 0; i < nxtop; i++) {
unshuffle64(a.copy(this.ny * i), nytop, 1, tmp);
}
for (int j = 0; j < nytop; j++) {
unshuffle64(a.copy(j), nxtop, this.ny, tmp);
}
// smooth by interpolating coefficients if SMOOTH != 0
if (smooth) {
hsmooth64(a, nxtop, nytop);
}
int oddx = nxtop % 2;
int oddy = nytop % 2;
for (i = 0; i < nxtop - oddx; i += 2) {
int s00 = this.ny * i; /* s00 is index of a[i,j] */
int s10 = s00 + this.ny; /* s10 is index of a[i+1,j] */
for (int j = 0; j < nytop - oddy; j += 2) {
long h0 = a.get(s00);
long hx = a.get(s10);
long hy = a.get(s00 + 1);
long hc = a.get(s10 + 1);
// round hx and hy to multiple of bit1, hc to multiple of
// bit0 h0 is already a multiple of bit2
hx = hx + (hx >= 0 ? prnd1 : nrnd1) & mask1;
hy = hy + (hy >= 0 ? prnd1 : nrnd1) & mask1;
hc = hc + (hc >= 0 ? prnd0 : nrnd0) & mask0;
// propagate bit0 of hc to hx,hy
long lowbit0 = hc & bit0;
hx = hx >= 0 ? hx - lowbit0 : hx + lowbit0;
hy = hy >= 0 ? hy - lowbit0 : hy + lowbit0;
// Propagate bits 0 and 1 of hc,hx,hy to h0. This could be
// simplified if we assume h0>0, but then the inversion
// would not be lossless for images with negative pixels.
long lowbit1 = (hc ^ hx ^ hy) & bit1;
h0 = h0 >= 0 ? h0 + lowbit0 - lowbit1 : h0 + (lowbit0 == 0 ? lowbit1 : lowbit0 - lowbit1);
// Divide sums by 2 (4 last time)
a.set(s10 + 1, h0 + hx + hy + hc >> shift);
a.set(s10, h0 + hx - hy - hc >> shift);
a.set(s00 + 1, h0 - hx + hy - hc >> shift);
a.set(s00, h0 - hx - hy + hc >> shift);
s00 += 2;
s10 += 2;
}
if (oddy != 0) {
// do last element in row if row length is odd s00+1, s10+1
// are off edge
long h0 = a.get(s00);
long hx = a.get(s10);
hx = (hx >= 0 ? hx + prnd1 : hx + nrnd1) & mask1;
long lowbit1 = hx & bit1;
h0 = h0 >= 0 ? h0 - lowbit1 : h0 + lowbit1;
a.set(s10, h0 + hx >> shift);
a.set(s00, h0 - hx >> shift);
}
}
if (oddx != 0) {
// do last row if column length is odd s10, s10+1 are off edge
int s00 = this.ny * i;
for (int j = 0; j < nytop - oddy; j += 2) {
long h0 = a.get(s00);
long hy = a.get(s00 + 1);
hy = (hy >= 0 ? hy + prnd1 : hy + nrnd1) & mask1;
long lowbit1 = hy & bit1;
h0 = h0 >= 0 ? h0 - lowbit1 : h0 + lowbit1;
a.set(s00 + 1, h0 + hy >> shift);
a.set(s00, h0 - hy >> shift);
s00 += 2;
}
if (oddy != 0) {
// do corner element if both row and column lengths are odd
// s00+1, s10, s10+1 are off edge
long h0 = a.get(s00);
a.set(s00, h0 >> shift);
}
}
// divide all the masks and rounding values by 2
bit1 = bit0;
bit0 = bit0 >> 1;
mask1 = mask0;
mask0 = mask0 >> 1;
prnd1 = prnd0;
prnd0 = prnd0 >> 1;
nrnd1 = nrnd0;
nrnd0 = prnd0 - 1;
}
return 0;
}
/**
* long a[]; tiledImageOperation of H-transform coefficients int
* nxtop,nytop; size of coefficient block to use int ny; actual 1st
* dimension of tiledImageOperation int scale; truncation scale factor that
* was used
*/
private void hsmooth64(LongArrayPointer a, int nxtop, int nytop) {
int i, j;
int ny2, s10, s00;
long hm, h0, hp, hmm, hpm, hmp, hpp, hx2, hy2, diff, dmax, dmin, s, smax, m1, m2;
/*
* Maximum change in coefficients is determined by scale factor. Since
* we rounded during division (see digitize.c), the biggest permitted
* change is scale/2.
*/
smax = this.scale >> 1;
if (smax <= 0) {
return;
}
ny2 = this.ny << 1;
/*
* We're indexing a as a 2-D tiledImageOperation with dimensions
* (nxtop,ny) of which only (nxtop,nytop) are used. The coefficients on
* the edge of the tiledImageOperation are not adjusted (which is why
* the loops below start at 2 instead of 0 and end at nxtop-2 instead of
* nxtop.)
*/
/*
* Adjust x difference hx
*/
for (i = 2; i < nxtop - 2; i += 2) {
s00 = this.ny * i; /* s00 is index of a[i,j] */
s10 = s00 + this.ny; /* s10 is index of a[i+1,j] */
for (j = 0; j < nytop; j += 2) {
/*
* hp is h0 (mean value) in next x zone, hm is h0 in previous x
* zone
*/
hm = a.get(s00 - ny2);
h0 = a.get(s00);
hp = a.get(s00 + ny2);
/*
* diff = 8 * hx slope that would match h0 in neighboring zones
*/
diff = hp - hm;
/*
* monotonicity constraints on diff
*/
dmax = Math.max(Math.min(hp - h0, h0 - hm), 0) << 2;
dmin = Math.min(Math.max(hp - h0, h0 - hm), 0) << 2;
/*
* if monotonicity would set slope = 0 then don't change hx.
* note dmax>=0, dmin<=0.
*/
if (dmin < dmax) {
diff = Math.max(Math.min(diff, dmax), dmin);
/*
* Compute change in slope limited to range +/- smax.
* Careful with rounding negative numbers when using shift
* for divide by 8.
*/
s = diff - (a.get(s10) << N03);
s = s >= 0 ? s >> N03 : s + N07 >> N03;
s = Math.max(Math.min(s, smax), -smax);
a.set(s10, a.get(s10) + s);
}
s00 += 2;
s10 += 2;
}
}
/*
* Adjust y difference hy
*/
for (i = 0; i < nxtop; i += 2) {
s00 = this.ny * i + 2;
s10 = s00 + this.ny;
for (j = 2; j < nytop - 2; j += 2) {
hm = a.get(s00 - 2);
h0 = a.get(s00);
hp = a.get(s00 + 2);
diff = hp - hm;
dmax = Math.max(Math.min(hp - h0, h0 - hm), 0) << 2;
dmin = Math.min(Math.max(hp - h0, h0 - hm), 0) << 2;
if (dmin < dmax) {
diff = Math.max(Math.min(diff, dmax), dmin);
s = diff - (a.get(s00 + 1) << N03);
s = s >= 0 ? s >> N03 : s + N07 >> N03;
s = Math.max(Math.min(s, smax), -smax);
a.set(s00 + 1, a.get(s00 + 1) + s);
}
s00 += 2;
s10 += 2;
}
}
/*
* Adjust curvature difference hc
*/
for (i = 2; i < nxtop - 2; i += 2) {
s00 = this.ny * i + 2;
s10 = s00 + this.ny;
for (j = 2; j < nytop - 2; j += 2) {
/*
* ------------------ y | hmp | | hpp | | ------------------ | |
* | h0 | | | ------------------ -------x | hmm | | hpm |
* ------------------
*/
hmm = a.get(s00 - ny2 - 2);
hpm = a.get(s00 + ny2 - 2);
hmp = a.get(s00 - ny2 + 2);
hpp = a.get(s00 + ny2 + 2);
h0 = a.get(s00);
/*
* diff = 64 * hc value that would match h0 in neighboring zones
*/
diff = hpp + hmm - hmp - hpm;
/*
* 2 times x,y slopes in this zone
*/
hx2 = a.get(s10) << 1;
hy2 = a.get(s00 + 1) << 1;
/*
* monotonicity constraints on diff
*/
m1 = Math.min(Math.max(hpp - h0, 0) - hx2 - hy2, Math.max(h0 - hpm, 0) + hx2 - hy2);
m2 = Math.min(Math.max(h0 - hmp, 0) - hx2 + hy2, Math.max(hmm - h0, 0) + hx2 + hy2);
dmax = Math.min(m1, m2) << BITS_OF_1_NYBBLE;
m1 = Math.max(Math.min(hpp - h0, 0) - hx2 - hy2, Math.min(h0 - hpm, 0) + hx2 - hy2);
m2 = Math.max(Math.min(h0 - hmp, 0) - hx2 + hy2, Math.min(hmm - h0, 0) + hx2 + hy2);
dmin = Math.max(m1, m2) << BITS_OF_1_NYBBLE;
/*
* if monotonicity would set slope = 0 then don't change hc.
* note dmax>=0, dmin<=0.
*/
if (dmin < dmax) {
diff = Math.max(Math.min(diff, dmax), dmin);
/*
* Compute change in slope limited to range +/- smax.
* Careful with rounding negative numbers when using shift
* for divide by 64.
*/
s = diff - (a.get(s10 + 1) << N06);
s = s >= 0 ? s >> N06 : s + N63 >> N06;
s = Math.max(Math.min(s, smax), -smax);
a.set(s10 + 1, a.get(s10 + 1) + s);
}
s00 += 2;
s10 += 2;
}
}
}
private int inputBit(ByteBuffer infile) {
if (this.bitsToGo == 0) { /* Read the next byte if no */
this.buffer2 = infile.get() & BYTE_MASK;
this.bitsToGo = BITS_OF_1_BYTE;
}
/*
* Return the next bit
*/
this.bitsToGo -= 1;
return this.buffer2 >> this.bitsToGo & 1;
}
/*
* Huffman decoding for fixed codes Coded values range from 0-15 Huffman
* code values (hex): 3e, 00, 01, 08, 02, 09, 1a, 1b, 03, 1c, 0a, 1d, 0b,
* 1e, 3f, 0c and number of bits in each code: 6, 3, 3, 4, 3, 4, 5, 5, 3, 5,
* 4, 5, 4, 5, 6, 4
*/
private int inputHuffman(ByteBuffer infile) {
int c;
/*
* get first 3 bits to start
*/
c = inputNbits(infile, N03);
if (c < N04) {
/*
* this is all we need return 1,2,4,8 for c=0,1,2,3
*/
return 1 << c;
}
/*
* get the next bit
*/
c = inputBit(infile) | c << 1;
if (c < N13) {
/*
* OK, 4 bits is enough
*/
switch (c) {
case N08:
return N03;
case N09:
return N05;
case N10:
return N10;
case N11:
return N12;
case N12:
return N15;
default:
}
}
/*
* get yet another bit
*/
c = inputBit(infile) | c << 1;
if (c < N31) {
/*
* OK, 5 bits is enough
*/
switch (c) {
case N26:
return N06;
case N27:
return N07;
case N28:
return N09;
case N29:
return N11;
case N30:
return N13;
default:
}
}
/*
* need the 6th bit
*/
c = inputBit(infile) | c << 1;
if (c == N62) {
return 0;
} else {
return N14;
}
}
private int inputNbits(ByteBuffer infile, int n) {
if (this.bitsToGo < n) {
/*
* need another byte's worth of bits
*/
this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK;
this.bitsToGo += BITS_OF_1_BYTE;
}
/*
* now pick off the first n bits
*/
this.bitsToGo -= n;
/* there was a slight gain in speed by replacing the following line */
/* return( (buffer2>>bits_to_go) & ((1<> this.bitsToGo & MASKS[n];
}
/* INITIALIZE BIT INPUT */
private int inputNnybble(ByteBuffer infile, int n, byte[] array) {
/*
* copy n 4-bit nybbles from infile to the lower 4 bits of
* tiledImageOperation
*/
int ii, kk, shift1, shift2;
/*
* forcing byte alignment doesn;t help, and even makes it go slightly
* slower if (bits_to_go != 8) input_nbits(infile, bits_to_go);
*/
if (n == 1) {
array[0] = (byte) inputNybble(infile);
return 0;
}
if (this.bitsToGo == BITS_OF_1_BYTE) {
/*
* already have 2 full nybbles in buffer2, so backspace the infile
* tiledImageOperation to reuse last char
*/
infile.position(infile.position() - 1);
this.bitsToGo = 0;
}
/* bits_to_go now has a value in the range 0 - 7. After adding */
/* another byte, bits_to_go effectively will be in range 8 - 15 */
shift1 = this.bitsToGo + BITS_OF_1_NYBBLE; /*
* shift1 will be in range 4
* - 11
*/
shift2 = this.bitsToGo; /* shift2 will be in range 0 - 7 */
kk = 0;
/* special case */
if (this.bitsToGo == 0) {
for (ii = 0; ii < n / 2; ii++) {
/*
* refill the buffer with next byte
*/
this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK;
array[kk] = (byte) (this.buffer2 >> BITS_OF_1_NYBBLE & NYBBLE_MASK);
array[kk + 1] = (byte) (this.buffer2 & NYBBLE_MASK); /*
* no shift
* required
*/
kk += 2;
}
} else {
for (ii = 0; ii < n / 2; ii++) {
/*
* refill the buffer with next byte
*/
this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK;
array[kk] = (byte) (this.buffer2 >> shift1 & NYBBLE_MASK);
array[kk + 1] = (byte) (this.buffer2 >> shift2 & NYBBLE_MASK);
kk += 2;
}
}
if (ii * 2 != n) { /* have to read last odd byte */
array[n - 1] = (byte) inputNybble(infile);
}
return this.buffer2 >> this.bitsToGo & NYBBLE_MASK;
}
private int inputNybble(ByteBuffer infile) {
if (this.bitsToGo < BITS_OF_1_NYBBLE) {
/*
* need another byte's worth of bits
*/
this.buffer2 = this.buffer2 << BITS_OF_1_BYTE | infile.get() & BYTE_MASK;
this.bitsToGo += BITS_OF_1_BYTE;
}
/*
* now pick off the first 4 bits
*/
this.bitsToGo -= BITS_OF_1_NYBBLE;
return this.buffer2 >> this.bitsToGo & NYBBLE_MASK;
}
/**
* Copy 4-bit values from a[(nx+1)/2,(ny+1)/2] to b[nx,ny], expanding each
* value to 2x2 pixels and inserting into bitplane BIT of B. A,B may NOT be
* same tiledImageOperation (it wouldn't make sense to be inserting bits
* into the same tiledImageOperation anyway.)
*/
private void qtreeBitins64(byte[] a, int lnx, int lny, LongArrayPointer b, int n, int bit) {
int i, j, s00;
long planeVal = 1L << bit;
// expand each 2x2 block
ByteBuffer k = ByteBuffer.wrap(a); /* k is index of a[i/2,j/2] */
for (i = 0; i < lnx - 1; i += 2) {
s00 = n * i; /* s00 is index of b[i,j] */
// Note: this code appears to run very slightly faster on a 32-bit
// linux machine using s00+n rather than the s10 intermediate
// variable
// s10 = s00+n; *//* s10 is index of b[i+1,j]
for (j = 0; j < lny - 1; j += 2) {
byte value = k.get();
if ((value & BIT_ONE) != ZERO) {
b.bitOr(s00 + n + 1, planeVal);
}
if ((value & BIT_TWO) != ZERO) {
b.bitOr(s00 + n, planeVal);
}
if ((value & BIT_THREE) != ZERO) {
b.bitOr(s00 + 1, planeVal);
}
if ((value & BIT_FOUR) != ZERO) {
b.bitOr(s00, planeVal);
}
// b.bitOr(s10+1, ((LONGLONG) ( a[k] & 1)) << bit; b.bitOr(s10 ,
// ((((LONGLONG)a[k])>>1) & 1) << bit; b.bitOr(s00+1,
// ((((LONGLONG)a[k])>>2) & 1) << bit; b.bitOr(s00
// ,((((LONGLONG)a[k])>>3) & 1) << bit;
s00 += 2;
/* s10 += 2; */
}
if (j < lny) {
// row size is odd, do last element in row s00+1, s10+1 are off
// edge
byte value = k.get();
if ((value & BIT_TWO) != ZERO) {
b.bitOr(s00 + n, planeVal);
}
if ((value & BIT_FOUR) != ZERO) {
b.bitOr(s00, planeVal);
}
// b.bitOr(s10 , ((((LONGLONG)a[k])>>1) & 1) << bit; b.bitOr(s00
// , ((((LONGLONG)a[k])>>3) & 1) << bit;
}
}
if (i < lnx) {
// column size is odd, do last row s10, s10+1 are off edge
s00 = n * i;
for (j = 0; j < lny - 1; j += 2) {
byte value = k.get();
if ((value & BIT_THREE) != ZERO) {
b.bitOr(s00 + 1, planeVal);
}
if ((value & BIT_FOUR) != ZERO) {
b.bitOr(s00, planeVal);
} // b.bitOr(s00+1, ((((LONGLONG)a[k])>>2) & 1) << bit;
// b.bitOr(s00 , ((((LONGLONG)a[k])>>3) & 1) << bit;
s00 += 2;
}
if (j < lny) {
// both row and column size are odd, do corner element s00+1,
// s10, s10+1 are off edge
if ((k.get() & BIT_FOUR) != ZERO) {
b.bitOr(s00, planeVal);
}
// b.bitOr(s00 , ((((LONGLONG)a[k])>>3) & 1) << bit;
}
}
}
/**
* copy 4-bit values from a[(nx+1)/2,(ny+1)/2] to b[nx,ny], expanding each
* value to 2x2 pixels a,b may be same tiledImageOperation
*/
private void qtreeCopy(byte[] a, int lnx, int lny, byte[] b, int n) {
int i, j, k, nx2, ny2;
int s00, s10;
// first copy 4-bit values to b start at end in case a,b are same
// tiledImageOperation
nx2 = (lnx + 1) / 2;
ny2 = (lny + 1) / 2;
k = ny2 * (nx2 - 1) + ny2 - 1; /* k is index of a[i,j] */
for (i = nx2 - 1; i >= 0; i--) {
s00 = 2 * (n * i + ny2 - 1); /* s00 is index of b[2*i,2*j] */
for (j = ny2 - 1; j >= 0; j--) {
b[s00] = a[k];
k -= 1;
s00 -= 2;
}
}
for (i = 0; i < lnx - 1; i += 2) { // now expand each 2x2 block
// Note: Unlike the case in qtree_bitins, this code runs faster on a
// 32-bit linux machine using the s10 intermediate variable, rather
// that using s00+n. Go figure!
s00 = n * i; // s00 is index of b[i,j]
s10 = s00 + n; // s10 is index of b[i+1,j]
for (j = 0; j < lny - 1; j += 2) {
b[s10 + 1] = (b[s00] & BIT_ONE) == ZERO ? ZERO : BIT_ONE;
b[s10] = (b[s00] & BIT_TWO) == ZERO ? ZERO : BIT_ONE;
b[s00 + 1] = (b[s00] & BIT_THREE) == ZERO ? ZERO : BIT_ONE;
b[s00] = (b[s00] & BIT_FOUR) == ZERO ? ZERO : BIT_ONE;
s00 += 2;
s10 += 2;
}
if (j < lny) {
// row size is odd, do last element in row s00+1, s10+1 are off
// edge not worth converting this to use 16 case statements
b[s10] = (byte) (b[s00] >> 1 & 1);
b[s00] = (byte) (b[s00] >> N03 & 1);
}
}
if (i < lnx) {
// column size is odd, do last row s10, s10+1 are off edge
s00 = n * i;
for (j = 0; j < lny - 1; j += 2) {
// not worth converting this to use 16 case statements
b[s00 + 1] = (byte) (b[s00] >> 2 & 1);
b[s00] = (byte) (b[s00] >> N03 & 1);
s00 += 2;
}
if (j < lny) {
// both row and column size are odd, do corner element s00+1,
// s10, s10+1 are off edge not worth converting this to use 16
// case statements
b[s00] = (byte) (b[s00] >> N03 & 1);
}
}
}
/**
* char *infile; long a[]; a is 2-D tiledImageOperation with dimensions
* (n,n) int n; length of full row in a int nqx; partial length of row to
* decode int nqy; partial length of column (<=n) int nbitplanes; number of
* bitplanes to decode
*/
private int qtreeDecode64(ByteBuffer infile, LongArrayPointer a, int n, int nqx, int nqy, int nbitplanes) {
int k, bit, b;
int nx2, ny2, nfx, nfy, c;
byte[] scratch;
/*
* log2n is log2 of max(nqx,nqy) rounded up to next power of 2
*/
int nqmax = nqx > nqy ? nqx : nqy;
int log2n = calculateLog2N(nqmax);
/*
* allocate scratch tiledImageOperation for working space
*/
int nqx2 = (nqx + 1) / 2;
int nqy2 = (nqy + 1) / 2;
scratch = new byte[nqx2 * nqy2];
/*
* now decode each bit plane, starting at the top A is assumed to be
* initialized to zero
*/
for (bit = nbitplanes - 1; bit >= 0; bit--) {
/*
* Was bitplane was quadtree-coded or written directly?
*/
b = inputNybble(infile);
if (b == 0) {
/*
* bit map was written directly
*/
readBdirect64(infile, a, n, nqx, nqy, scratch, bit);
} else if (b != NYBBLE_MASK) {
throw new RuntimeException("Compression error");
} else {
/*
* bitmap was quadtree-coded, do log2n expansions read first
* code
*/
scratch[0] = (byte) inputHuffman(infile);
/*
* now do log2n expansions, reading codes from file as necessary
*/
nx2 = 1;
ny2 = 1;
nfx = nqx;
nfy = nqy;
c = 1 << log2n;
for (k = 1; k < log2n; k++) {
/*
* this somewhat cryptic code generates the sequence n[k-1]
* = (n[k]+1)/2 where n[log2n]=nqx or nqy
*/
c = c >> 1;
nx2 = nx2 << 1;
ny2 = ny2 << 1;
if (nfx <= c) {
nx2 -= 1;
} else {
nfx -= c;
}
if (nfy <= c) {
ny2 -= 1;
} else {
nfy -= c;
}
qtreeExpand(infile, scratch, nx2, ny2, scratch);
}
/*
* now copy last set of 4-bit codes to bitplane bit of
* tiledImageOperation a
*/
qtreeBitins64(scratch, nqx, nqy, a, n, bit);
}
}
return 0;
}
/*
* do one quadtree expansion step on tiledImageOperation
* a[(nqx+1)/2,(nqy+1)/2] results put into b[nqx,nqy] (which may be the same
* as a)
*/
private void qtreeExpand(ByteBuffer infile, byte[] a, int nx2, int ny2, byte[] b) {
int i;
/*
* first copy a to b, expanding each 4-bit value
*/
qtreeCopy(a, nx2, ny2, b, ny2);
/*
* now read new 4-bit values into b for each non-zero element
*/
for (i = nx2 * ny2 - 1; i >= 0; i--) {
if (b[i] != 0) {
b[i] = (byte) inputHuffman(infile);
}
}
}
private void readBdirect64(ByteBuffer infile, LongArrayPointer a, int n, int nqx, int nqy, byte[] scratch, int bit) {
/*
* read bit image packed 4 pixels/nybble
*/
/*
* int i; for (i = 0; i < ((nqx+1)/2) * ((nqy+1)/2); i++) { scratch[i] =
* input_nybble(infile); }
*/
inputNnybble(infile, (nqx + 1) / 2 * ((nqy + 1) / 2), scratch);
/*
* insert in bitplane BIT of image A
*/
qtreeBitins64(scratch, nqx, nqy, a, n, bit);
}
/*
* ##########################################################################
* ##
*/
private void startInputingBits() {
/*
* Buffer starts out with no bits in it
*/
this.bitsToGo = 0;
}
private void undigitize64(LongArrayPointer a) {
long scale64;
/*
* multiply by scale
*/
if (this.scale <= 1) {
return;
}
scale64 = this.scale; /*
* use a 64-bit int for efficiency in the big loop
*/
for (int index = 0; index < a.a.length; index++) {
a.a[index] = a.a[index] * scale64;
}
}
/**
* long a[]; tiledImageOperation to shuffle int n; number of elements to
* shuffle int n2; second dimension long tmp[]; scratch storage
*/
private void unshuffle64(LongArrayPointer a, int n, int n2, long[] tmp) {
int i;
int nhalf;
LongArrayPointer p1, p2, pt;
/*
* copy 2nd half of tiledImageOperation to tmp
*/
nhalf = n + 1 >> 1;
pt = new LongArrayPointer(tmp);
p1 = a.copy(n2 * nhalf); /* pointer to a[i] */
for (i = nhalf; i < n; i++) {
pt.set(p1.get());
p1.offset += n2;
pt.offset += 1;
}
/*
* distribute 1st half of tiledImageOperation to even elements
*/
p2 = a.copy(n2 * (nhalf - 1)); /* pointer to a[i] */
p1 = a.copy(n2 * (nhalf - 1) << 1); /* pointer to a[2*i] */
for (i = nhalf - 1; i >= 0; i--) {
p1.set(p2.get());
p2.offset -= n2;
p1.offset -= n2 + n2;
}
/*
* now distribute 2nd half of tiledImageOperation (in tmp) to odd
* elements
*/
pt = new LongArrayPointer(tmp);
p1 = a.copy(n2); /* pointer to a[i] */
for (i = 1; i < n; i += 2) {
p1.set(pt.get());
p1.offset += n2 + n2;
pt.offset += 1;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy