nom.tam.fits.compression.algorithm.quant.QuantizeProcessor Maven / Gradle / Ivy
package nom.tam.fits.compression.algorithm.quant;
/*
* #%L
* nom.tam FITS library
* %%
* Copyright (C) 1996 - 2015 nom-tam-fits
* %%
* This is free and unencumbered software released into the public domain.
*
* Anyone is free to copy, modify, publish, use, compile, sell, or
* distribute this software, either in source code form or as a compiled
* binary, for any purpose, commercial or non-commercial, and by any
* means.
*
* In jurisdictions that recognize copyright laws, the author or authors
* of this software dedicate any and all copyright interest in the
* software to the public domain. We make this dedication for the benefit
* of the public at large and to the detriment of our heirs and
* successors. We intend this dedication to be an overt act of
* relinquishment in perpetuity of all present and future rights to this
* software under copyright law.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
* #L%
*/
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import nom.tam.fits.compression.algorithm.api.ICompressor;
public class QuantizeProcessor {
public static class DoubleQuantCompressor extends QuantizeProcessor implements ICompressor {
private final ICompressor postCompressor;
public DoubleQuantCompressor(QuantizeOption quantizeOption, ICompressor postCompressor) {
super(quantizeOption);
this.postCompressor = postCompressor;
}
@Override
public boolean compress(DoubleBuffer buffer, ByteBuffer compressed) {
IntBuffer intData = IntBuffer.wrap(new int[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()]);
double[] doubles = new double[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()];
buffer.get(doubles);
if (!this.quantize(doubles, intData)) {
return false;
}
intData.rewind();
this.postCompressor.compress(intData, compressed);
return true;
}
@Override
public void decompress(ByteBuffer compressed, DoubleBuffer buffer) {
IntBuffer intData = IntBuffer.wrap(new int[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()]);
this.postCompressor.decompress(compressed, intData);
intData.rewind();
unquantize(intData, buffer);
}
}
/**
* TODO this is done very inefficient and should be refactored!
*/
public static class FloatQuantCompressor extends QuantizeProcessor implements ICompressor {
private final ICompressor postCompressor;
public FloatQuantCompressor(QuantizeOption quantizeOption, ICompressor postCompressor) {
super(quantizeOption);
this.postCompressor = postCompressor;
}
@Override
public boolean compress(FloatBuffer buffer, ByteBuffer compressed) {
float[] floats = new float[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()];
double[] doubles = new double[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()];
buffer.get(floats);
for (int index = 0; index < doubles.length; index++) {
doubles[index] = floats[index];
}
IntBuffer intData = IntBuffer.wrap(new int[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()]);
if (!this.quantize(doubles, intData)) {
return false;
}
intData.rewind();
this.postCompressor.compress(intData, compressed);
return true;
}
@Override
public void decompress(ByteBuffer compressed, FloatBuffer buffer) {
IntBuffer intData = IntBuffer.wrap(new int[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()]);
this.postCompressor.decompress(compressed, intData);
intData.rewind();
double[] doubles = new double[this.quantizeOption.getTileHeight() * this.quantizeOption.getTileWidth()];
DoubleBuffer doubleBuffer = DoubleBuffer.wrap(doubles);
unquantize(intData, doubleBuffer);
for (double d : doubles) {
buffer.put((float) d);
}
}
}
private class BaseFilter extends PixelFilter {
BaseFilter() {
super(null);
}
@Override
protected void nextPixel() {
}
@Override
protected double toDouble(int pixel) {
return (pixel + ROUNDING_HALF) * QuantizeProcessor.this.bScale + QuantizeProcessor.this.bZero;
}
@Override
protected int toInt(double pixel) {
return nint((pixel - QuantizeProcessor.this.bZero) / QuantizeProcessor.this.bScale + ROUNDING_HALF);
}
}
private class DitherFilter extends PixelFilter {
private static final int LAST_RANDOM_VALUE = 1043618065;
private static final double MAX_INT_AS_DOUBLE = Integer.MAX_VALUE;
/**
* DO NOT CHANGE THIS; used when quantizing real numbers
*/
private static final int N_RANDOM = 10000;
private static final int RANDOM_MULTIPLICATOR = 500;
private static final double RANDOM_START_VALUE = 16807.0;
private int iseed = 0;
private int nextRandom = 0;
private final double[] randomValues;
DitherFilter(long seed) {
super(null);
this.randomValues = initRandoms();
initialize(seed);
}
public void initialize(long ditherSeed) {
this.iseed = (int) ((ditherSeed - 1) % N_RANDOM);
this.nextRandom = (int) (this.randomValues[this.iseed] * RANDOM_MULTIPLICATOR);
}
public double nextRandom() {
return this.randomValues[this.nextRandom];
}
private double[] initRandoms() {
/* initialize an tiledImageOperation of random numbers */
int ii;
double a = RANDOM_START_VALUE;
double m = MAX_INT_AS_DOUBLE;
double temp;
double seed;
/* allocate tiledImageOperation for the random number sequence */
double[] randomValue = new double[N_RANDOM];
/*
* We need a portable algorithm that anyone can use to generate this
* exact same sequence of random number. The C 'rand' function is
* not suitable because it is not available to Fortran or Java
* programmers. Instead, use a well known simple algorithm published
* here: "Random number generators: good ones are hard to find",
* Communications of the ACM, Volume 31 , Issue 10 (October 1988)
* Pages: 1192 - 1201
*/
/* initialize the random numbers */
seed = 1;
for (ii = 0; ii < N_RANDOM; ii++) {
temp = a * seed;
seed = temp - m * (int) (temp / m);
randomValue[ii] = seed / m;
}
/*
* IMPORTANT NOTE: the 10000th seed value must have the value
* 1043618065 if the algorithm has been implemented correctly
*/
if ((int) seed != LAST_RANDOM_VALUE) {
throw new IllegalArgumentException("randomValue generated incorrect random number sequence");
}
return randomValue;
}
@Override
protected void nextPixel() {
this.nextRandom++;
if (this.nextRandom >= N_RANDOM) {
this.iseed++;
if (this.iseed >= N_RANDOM) {
this.iseed = 0;
}
this.nextRandom = (int) (this.randomValues[this.iseed] * RANDOM_MULTIPLICATOR);
}
}
@Override
protected double toDouble(int pixel) {
return (pixel - nextRandom() + ROUNDING_HALF) * QuantizeProcessor.this.bScale + QuantizeProcessor.this.bZero;
}
@Override
protected int toInt(double pixel) {
return nint((pixel - QuantizeProcessor.this.bZero) / QuantizeProcessor.this.bScale + nextRandom() - ROUNDING_HALF);
}
}
private class NullFilter extends PixelFilter {
private final double nullValue;
private final boolean isNaN;
private final int nullValueIndicator;
NullFilter(double nullValue, int nullValueIndicator, PixelFilter next) {
super(next);
this.nullValue = nullValue;
this.isNaN = Double.isNaN(this.nullValue);
this.nullValueIndicator = nullValueIndicator;
}
public final boolean isNull(double pixel) {
return this.isNaN ? Double.isNaN(pixel) : this.nullValue == pixel;
}
@Override
protected double toDouble(int pixel) {
if (pixel == this.nullValueIndicator) {
return this.nullValue;
}
return super.toDouble(pixel);
}
@Override
protected int toInt(double pixel) {
if (isNull(pixel)) {
return this.nullValueIndicator;
}
return super.toInt(pixel);
}
}
private class PixelFilter {
private final PixelFilter next;
protected PixelFilter(PixelFilter next) {
this.next = next;
}
protected void nextPixel() {
this.next.nextPixel();
}
protected double toDouble(int pixel) {
return this.next.toDouble(pixel);
}
protected int toInt(double pixel) {
return this.next.toInt(pixel);
}
}
private class ZeroFilter extends PixelFilter {
ZeroFilter(PixelFilter next) {
super(next);
}
@Override
protected double toDouble(int pixel) {
if (pixel == ZERO_VALUE) {
return 0.0;
}
return super.toDouble(pixel);
}
@Override
protected int toInt(double pixel) {
if (pixel == 0.0) {
return ZERO_VALUE;
}
return super.toInt(pixel);
}
}
private static final double MAX_INT_AS_DOUBLE = Integer.MAX_VALUE;
/**
* number of reserved values, starting with
*/
private static final long N_RESERVED_VALUES = 10;
private static final double ROUNDING_HALF = 0.5;
/**
* value used to represent zero-valued pixels
*/
private static final int ZERO_VALUE = Integer.MIN_VALUE + 2;
private final boolean centerOnZero;
private final PixelFilter pixelFilter;
private double bScale;
private double bZero;
private Quantize quantize;
protected final QuantizeOption quantizeOption;
public QuantizeProcessor(QuantizeOption quantizeOption) {
this.quantizeOption = quantizeOption;
this.bScale = quantizeOption.getBScale();
this.bZero = quantizeOption.getBZero();
PixelFilter filter = null;
boolean localCenterOnZero = quantizeOption.isCenterOnZero();
if (quantizeOption.isDither2()) {
filter = new DitherFilter(quantizeOption.getSeed());
localCenterOnZero = true;
quantizeOption.setCheckZero(true);
} else if (quantizeOption.isDither()) {
filter = new DitherFilter(quantizeOption.getSeed());
} else {
filter = new BaseFilter();
}
if (quantizeOption.isCheckZero()) {
filter = new ZeroFilter(filter);
}
if (quantizeOption.isCheckNull()) {
final NullFilter nullFilter = new NullFilter(quantizeOption.getNullValue(), quantizeOption.getNullValueIndicator(), filter);
filter = nullFilter;
this.quantize = new Quantize(quantizeOption) {
@Override
protected int findNextValidPixelWithNullCheck(int nx, DoubleArrayPointer rowpix, int ii) {
while (ii < nx && nullFilter.isNull(rowpix.get(ii))) {
ii++;
}
return ii;
}
@Override
protected boolean isNull(double d) {
return nullFilter.isNull(d);
}
};
} else {
this.quantize = new Quantize(quantizeOption);
}
this.pixelFilter = filter;
this.centerOnZero = localCenterOnZero;
}
public Quantize getQuantize() {
return this.quantize;
}
public boolean quantize(double[] doubles, IntBuffer quants) {
boolean success = this.quantize.quantize(doubles, this.quantizeOption.getTileWidth(), this.quantizeOption.getTileHeight());
if (success) {
calculateBZeroAndBscale();
quantize(DoubleBuffer.wrap(doubles, 0, this.quantizeOption.getTileWidth() * this.quantizeOption.getTileHeight()), quants);
}
return success;
}
public void quantize(final DoubleBuffer fdata, final IntBuffer intData) {
while (fdata.hasRemaining()) {
intData.put(this.pixelFilter.toInt(fdata.get()));
this.pixelFilter.nextPixel();
}
}
public void unquantize(final IntBuffer intData, final DoubleBuffer fdata) {
while (fdata.hasRemaining()) {
fdata.put(this.pixelFilter.toDouble(intData.get()));
this.pixelFilter.nextPixel();
}
}
private void calculateBZeroAndBscale() {
this.bScale = this.quantizeOption.getBScale();
this.bZero = zeroCenter();
this.quantizeOption.setIntMinValue(nint((this.quantizeOption.getMinValue() - this.bZero) / this.bScale));
this.quantizeOption.setIntMaxValue(nint((this.quantizeOption.getMaxValue() - this.bZero) / this.bScale));
this.quantizeOption.setBZero(this.bZero);
}
private int nint(double x) {
return x >= 0. ? (int) (x + ROUNDING_HALF) : (int) (x - ROUNDING_HALF);
}
private double zeroCenter() {
final double minValue = this.quantizeOption.getMinValue();
final double maxValue = this.quantizeOption.getMaxValue();
double evaluatedBZero;
if (!this.quantizeOption.isCheckNull() && !this.centerOnZero) {
// don't have to check for nulls
// return all positive values, if possible since some compression
// algorithms either only work for positive integers, or are more
// efficient.
if ((maxValue - minValue) / this.bScale < MAX_INT_AS_DOUBLE - N_RESERVED_VALUES) {
evaluatedBZero = minValue;
// fudge the zero point so it is an integer multiple of bScale
// This helps to ensure the same scaling will be performed if
// the file undergoes multiple fpack/funpack cycles
long iqfactor = (long) (evaluatedBZero / this.bScale + ROUNDING_HALF);
evaluatedBZero = iqfactor * this.bScale;
} else {
/* center the quantized levels around zero */
evaluatedBZero = (minValue + maxValue) / 2.;
}
} else {
// data contains null values or has be forced to center on zero
// shift the range to be close to the value used to represent null
// values
evaluatedBZero = minValue - this.bScale * (Integer.MIN_VALUE + N_RESERVED_VALUES + 1);
}
return evaluatedBZero;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy