All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nom.tam.fits.compression.algorithm.rice.RiceCompressor Maven / Gradle / Ivy

package nom.tam.fits.compression.algorithm.rice;

import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.IntBuffer;
import java.nio.ShortBuffer;
import java.util.logging.Logger;

import nom.tam.fits.compression.algorithm.api.ICompressor;
import nom.tam.fits.compression.algorithm.quant.QuantizeProcessor.DoubleQuantCompressor;
import nom.tam.fits.compression.algorithm.quant.QuantizeProcessor.FloatQuantCompressor;
import nom.tam.util.FitsIO;
import nom.tam.util.type.PrimitiveTypes;

/*
 * #%L
 * nom.tam FITS library
 * %%
 * Copyright (C) 1996 - 2015 nom-tam-fits
 * %%
 * This is free and unencumbered software released into the public domain.
 * 
 * Anyone is free to copy, modify, publish, use, compile, sell, or
 * distribute this software, either in source code form or as a compiled
 * binary, for any purpose, commercial or non-commercial, and by any
 * means.
 * 
 * In jurisdictions that recognize copyright laws, the author or authors
 * of this software dedicate any and all copyright interest in the
 * software to the public domain. We make this dedication for the benefit
 * of the public at large and to the detriment of our heirs and
 * successors. We intend this dedication to be an overt act of
 * relinquishment in perpetuity of all present and future rights to this
 * software under copyright law.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 * #L%
 */

/**
 * The original compression was designed by Rice, Yeh, and Miller the code was
 * written by Richard White at STSc at the STScI and included (ported to c and
 * adapted) in cfitsio by William Pence, NASA/GSFC. That code was then ported to
 * java by R. van Nieuwenhoven. Later it was massively refactored to harmonize
 * the different compression algorithms and reduce the duplicate code pieces
 * without obscuring the algorithm itself as far as possible.
 *
 * @author Richard White
 * @author William Pence
 * @author Richard van Nieuwenhoven
 */
public abstract class RiceCompressor implements ICompressor {

    public static class ByteRiceCompressor extends RiceCompressor {

        private ByteBuffer pixelBuffer;

        public ByteRiceCompressor(RiceCompressOption option) {
            super(option.setDefaultBytePix(PrimitiveTypes.BYTE.size()));
        }

        @Override
        public boolean compress(ByteBuffer buffer, ByteBuffer writeBuffer) {
            this.pixelBuffer = buffer;
            super.compress(buffer.limit(), this.pixelBuffer.get(this.pixelBuffer.position()), new BitBuffer(writeBuffer));
            return true;
        }

        @Override
        public void decompress(ByteBuffer readBuffer, ByteBuffer buffer) {
            this.pixelBuffer = buffer;
            super.decompressBuffer(readBuffer, buffer.limit());
        }

        @Override
        protected int nextPixel() {
            return this.pixelBuffer.get();
        }

        @Override
        protected void nextPixel(int pixel) {
            this.pixelBuffer.put((byte) pixel);
        }
    }

    public static class DoubleRiceCompressor extends DoubleQuantCompressor {

        public DoubleRiceCompressor(RiceQuantizeCompressOption options) {
            super(options, new IntRiceCompressor(options.getRiceCompressOption()));
        }
    }

    public static class FloatRiceCompressor extends FloatQuantCompressor {

        public FloatRiceCompressor(RiceQuantizeCompressOption options) {
            super(options, new IntRiceCompressor(options.getRiceCompressOption()));
        }
    }

    public static class IntRiceCompressor extends RiceCompressor {

        private IntBuffer pixelBuffer;

        public IntRiceCompressor(RiceCompressOption option) {
            super(option.setDefaultBytePix(PrimitiveTypes.INT.size()));
        }

        @Override
        public boolean compress(IntBuffer buffer, ByteBuffer writeBuffer) {
            this.pixelBuffer = buffer;
            super.compress(buffer.limit(), this.pixelBuffer.get(this.pixelBuffer.position()), new BitBuffer(writeBuffer));
            return true;
        }

        @Override
        public void decompress(ByteBuffer readBuffer, IntBuffer buffer) {
            this.pixelBuffer = buffer;
            super.decompressBuffer(readBuffer, buffer.limit());
        }

        @Override
        protected int nextPixel() {
            return this.pixelBuffer.get();
        }

        @Override
        protected void nextPixel(int pixel) {
            this.pixelBuffer.put(pixel);
        }
    }

    public static class ShortRiceCompressor extends RiceCompressor {

        private ShortBuffer pixelBuffer;

        public ShortRiceCompressor(RiceCompressOption option) {
            super(option.setDefaultBytePix(PrimitiveTypes.SHORT.size()));
        }

        @Override
        public boolean compress(ShortBuffer buffer, ByteBuffer writeBuffer) {
            this.pixelBuffer = buffer;
            super.compress(buffer.limit(), this.pixelBuffer.get(this.pixelBuffer.position()), new BitBuffer(writeBuffer));
            return true;
        }

        @Override
        public void decompress(ByteBuffer readBuffer, ShortBuffer buffer) {
            this.pixelBuffer = buffer;
            super.decompressBuffer(readBuffer, buffer.limit());
        }

        @Override
        protected int nextPixel() {
            return this.pixelBuffer.get();
        }

        @Override
        protected void nextPixel(int pixel) {
            this.pixelBuffer.put((short) pixel);
        }
    }

    /**
     * mask to convert a "unsigned" byte to a long.
     */
    private static final long UNSIGNED_BYTE_MASK = 0xFFL;

    /**
     * mask to convert a "unsigned" short to a long.
     */
    private static final long UNSIGNED_SHORT_MASK = 0xFFFFL;

    /**
     * mask to convert a "unsigned" int to a long.
     */
    private static final long UNSIGNED_INTEGER_MASK = 0xFFFFFFFFL;

    /**
     * logger to log to.
     */
    private static final Logger LOG = Logger.getLogger(RiceCompressor.class.getName());

    private static final int BITS_OF_1_BYTE = 8;

    private static final int BITS_PER_BYTE = 8;

    private static final int BYTE_MASK = 0xff;

    private static final int FS_BITS_FOR_BYTE = 3;

    private static final int FS_BITS_FOR_INT = 5;

    private static final int FS_BITS_FOR_SHORT = 4;

    private static final int FS_MAX_FOR_BYTE = 6;

    private static final int FS_MAX_FOR_INT = 25;

    private static final int FS_MAX_FOR_SHORT = 14;

    /*
     * nonzero_count is lookup table giving number of bits in 8-bit values not
     * including leading zeros used in fits_rdecomp, fits_rdecomp_short and
     * fits_rdecomp_byte.
     * @formatter:off
     */
    private static final int[] NONZERO_COUNT = {
        0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
        8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
    };
    // @formatter:on

    private final int bBits;

    private final int bitsPerPixel;

    private final int blockSize;

    private final int fsBits;

    private final int fsMax;

    private RiceCompressor(RiceCompressOption option) {
        this.blockSize = option.getBlockSize();
        if (option.getBytePix() == PrimitiveTypes.BYTE.size()) {
            this.fsBits = FS_BITS_FOR_BYTE;
            this.fsMax = FS_MAX_FOR_BYTE;
            this.bitsPerPixel = FitsIO.BITS_OF_1_BYTE;
        } else if (option.getBytePix() == PrimitiveTypes.SHORT.size()) {
            this.fsBits = FS_BITS_FOR_SHORT;
            this.fsMax = FS_MAX_FOR_SHORT;
            this.bitsPerPixel = FitsIO.BITS_OF_2_BYTES;
        } else if (option.getBytePix() == PrimitiveTypes.INT.size()) {
            this.fsBits = FS_BITS_FOR_INT;
            this.fsMax = FS_MAX_FOR_INT;
            this.bitsPerPixel = FitsIO.BITS_OF_4_BYTES;
        } else {
            throw new UnsupportedOperationException("Rice only supports 1/2/4 type per pixel");
        }
        /*
         * From bsize derive: FSBITS = # bits required to store FS FSMAX =
         * maximum value for FS BBITS = bits/pixel for direct coding
         */
        this.bBits = 1 << this.fsBits;
    }

    /**
     * 

* undo mapping and differencing Note that some of these operations will * overflow the unsigned int arithmetic -- that's OK, it all works out to * give the right answers in the output file. *

*

* In java this is more complicated because of the missing unsigned * integers. trying to simulate the behavior *

* * @param lastpix * the current last pix value * @param diff * the difference to "add" * @return return the new lastpiy value */ private long undoMappingAndDifferencing(long lastpix, long diff) { diff &= UNSIGNED_INTEGER_MASK; if ((diff & 1) == 0) { diff = diff >>> 1; } else { diff = diff >>> 1 ^ UNSIGNED_INTEGER_MASK; } lastpix = diff + lastpix & UNSIGNED_INTEGER_MASK; nextPixel((int) lastpix); return lastpix; } /** * compress the integer tiledImageOperation on a rise compressed byte * buffer. * * @param dataLength * length of the data to compress * @param firstPixel * the value of the first pixel * @param buffer * the buffer to write to */ protected void compress(final int dataLength, int firstPixel, BitBuffer buffer) { /* the first difference will always be zero */ int lastpix = firstPixel; /* write out first int value to the first 4 bytes of the buffer */ buffer.putInt(firstPixel, this.bitsPerPixel); int thisblock = this.blockSize; for (int i = 0; i < dataLength; i += this.blockSize) { /* last block may be shorter */ if (dataLength - i < this.blockSize) { thisblock = dataLength - i; } /* * Compute differences of adjacent pixels and map them to unsigned * values. Note that this may overflow the integer variables -- * that's OK, because we can recover when decompressing. If we were * compressing shorts or bytes, would want to do this arithmetic * with short/byte working variables (though diff will still be * passed as an int.) compute sum of mapped pixel values at same * time use double precision for sum to allow 32-bit integer inputs */ long[] diff = new long[this.blockSize]; double pixelsum = 0.0; int nextpix; /* * tiledImageOperation for differences mapped to non-negative values */ for (int j = 0; j < thisblock; j++) { nextpix = nextPixel(); long pdiff = (nextpix - lastpix); diff[j] = (pdiff < 0 ? (pdiff << 1) ^ UNSIGNED_INTEGER_MASK : pdiff << 1) & UNSIGNED_INTEGER_MASK; pixelsum += diff[j]; lastpix = nextpix; } /* * compute number of bits to split from sum */ double dpsum = (pixelsum - thisblock / 2d - 1d) / thisblock; if (dpsum < 0) { dpsum = 0.0; } long psum = (long) dpsum >> 1; int fs; for (fs = 0; psum > 0; fs++) { // NOSONAR psum >>= 1; } /* * write the codes fsbits ID bits used to indicate split level */ if (fs >= this.fsMax) { /* * Special high entropy case when FS >= fsmax Just write pixel * difference values directly, no Rice coding at all. */ buffer.putInt(this.fsMax + 1, this.fsBits); for (int j = 0; j < thisblock; j++) { buffer.putLong(diff[j], this.bBits); } } else if (fs == 0 && pixelsum == 0) { // NOSONAR /* * special low entropy case when FS = 0 and pixelsum=0 (all * pixels in block are zero.) Output a 0 and return */ buffer.putInt(0, this.fsBits); } else { /* normal case: not either very high or very low entropy */ buffer.putInt(fs + 1, this.fsBits); int fsmask = (1 << fs) - 1; /* * local copies of bit buffer to improve optimization */ int bitsToGo = buffer.missingBitsInCurrentByte(); int bitBuffer = buffer.bitbuffer() >> bitsToGo; buffer.movePosition(bitsToGo - BITS_OF_1_BYTE); for (int j = 0; j < thisblock; j++) { int v = (int) diff[j]; int top = v >> fs; /* * top is coded by top zeros + 1 */ if (bitsToGo >= top + 1) { bitBuffer <<= top + 1; bitBuffer |= 1; bitsToGo -= top + 1; } else { bitBuffer <<= bitsToGo; buffer.putByte((byte) (bitBuffer & BYTE_MASK)); for (top -= bitsToGo; top >= BITS_OF_1_BYTE; top -= BITS_OF_1_BYTE) { buffer.putByte((byte) 0); } bitBuffer = 1; bitsToGo = BITS_OF_1_BYTE - 1 - top; } /* * bottom FS bits are written without coding code is * output_nbits, moved into this routine to reduce overheads * This code potentially breaks if FS>24, so I am limiting * FS to 24 by choice of FSMAX above. */ if (fs > 0) { bitBuffer <<= fs; bitBuffer |= v & fsmask; bitsToGo -= fs; while (bitsToGo <= 0) { buffer.putByte((byte) (bitBuffer >> -bitsToGo & BYTE_MASK)); bitsToGo += BITS_OF_1_BYTE; } } } buffer.putByte((byte) (bitBuffer & BYTE_MASK), BITS_OF_1_BYTE - bitsToGo); } } buffer.close(); } /** * decompress the readbuffer and fill the pixelarray. * * @param readBuffer * input buffer * @param nx * the number of pixel to uncompress */ protected void decompressBuffer(final ByteBuffer readBuffer, final int nx) { /* first x bytes of input buffer contain the value of the first */ /* x byte integer value, without any encoding */ long lastpix = 0L; if (this.bitsPerPixel == PrimitiveTypes.BYTE.bitPix()) { lastpix = readBuffer.get() & UNSIGNED_BYTE_MASK; } else if (this.bitsPerPixel == PrimitiveTypes.SHORT.bitPix()) { lastpix = readBuffer.getShort() & UNSIGNED_SHORT_MASK; } else if (this.bitsPerPixel == PrimitiveTypes.INT.bitPix()) { lastpix = readBuffer.getInt() & UNSIGNED_INTEGER_MASK; } long b = readBuffer.get() & BYTE_MASK; /* bit buffer */ int nbits = BITS_PER_BYTE; /* number of bits remaining in b */ for (int i = 0; i < nx;) { /* get the FS value from first fsbits */ nbits -= this.fsBits; while (nbits < 0) { b = b << BITS_PER_BYTE | readBuffer.get() & BYTE_MASK; nbits += BITS_PER_BYTE; } long fs = (b >>> nbits) - 1L; b &= (1 << nbits) - 1; /* loop over the next block */ int imax = i + this.blockSize; if (imax > nx) { imax = nx; } if (fs < 0) { /* low-entropy case, all zero differences */ for (; i < imax; i++) { nextPixel((int) lastpix); } } else if (fs == this.fsMax) { /* high-entropy case, directly coded pixel values */ for (; i < imax; i++) { int k = this.bBits - nbits; long diff = b << k; for (k -= BITS_PER_BYTE; k >= 0; k -= BITS_PER_BYTE) { b = readBuffer.get() & BYTE_MASK; diff |= b << k; } if (nbits > 0) { b = readBuffer.get() & BYTE_MASK; diff |= b >>> -k; b &= (1 << nbits) - 1L; } else { b = 0; } lastpix = undoMappingAndDifferencing(lastpix, diff); } } else { /* normal case, Rice coding */ for (; i < imax; i++) { /* count number of leading zeros */ while (b == 0) { nbits += BITS_PER_BYTE; b = readBuffer.get() & BYTE_MASK; } long nzero = nbits - NONZERO_COUNT[(int) (b & BYTE_MASK)]; nbits -= nzero + 1; /* flip the leading one-bit */ b ^= 1 << nbits; /* get the FS trailing bits */ nbits -= fs; while (nbits < 0) { b = b << BITS_PER_BYTE | readBuffer.get() & BYTE_MASK; nbits += BITS_PER_BYTE; } long diff = nzero << fs | b >> nbits; b &= (1 << nbits) - 1L; lastpix = undoMappingAndDifferencing(lastpix, diff); } } } if (readBuffer.limit() > readBuffer.position()) { LOG.warning("decompressing left over some extra bytes got: " + readBuffer.limit() + " but needed only " + readBuffer.position()); } } protected abstract int nextPixel(); protected abstract void nextPixel(int pixel); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy