All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.gov.nasa.worldwind.util.WWMath Maven / Gradle / Ivy

Go to download

World Wind is a collection of components that interactively display 3D geographic information within Java applications or applets.

There is a newer version: 2.0.0-986
Show newest version
/*
 * Copyright (C) 2012 United States Government as represented by the Administrator of the
 * National Aeronautics and Space Administration.
 * All Rights Reserved.
 */

package gov.nasa.worldwind.util;

import com.jogamp.common.nio.Buffers;
import gov.nasa.worldwind.View;
import gov.nasa.worldwind.avlist.AVKey;
import gov.nasa.worldwind.geom.*;
import gov.nasa.worldwind.globes.Globe;
import gov.nasa.worldwind.render.DrawContext;

import java.awt.*;
import java.nio.*;
import java.util.*;
import java.util.List;

/**
 * A collection of useful math methods, all static.
 *
 * @author tag
 * @version $Id: WWMath.java 1677 2013-10-21 18:57:51Z dcollins $
 */
public class WWMath
{
    public static final double SECOND_TO_MILLIS = 1000.0;
    public static final double MINUTE_TO_MILLIS = 60.0 * SECOND_TO_MILLIS;
    public static final double HOUR_TO_MILLIS = 60.0 * MINUTE_TO_MILLIS;
    public static final double DAY_TO_MILLIS = 24.0 * HOUR_TO_MILLIS;

    public static final double METERS_TO_KILOMETERS = 1e-3;
    public static final double METERS_TO_MILES = 0.000621371192;
    public static final double METERS_TO_NAUTICAL_MILES = 0.000539956803;
    public static final double METERS_TO_YARDS = 1.0936133;
    public static final double METERS_TO_FEET = 3.280839895;

    public static final double SQUARE_METERS_TO_SQUARE_KILOMETERS = 1e-6;
    public static final double SQUARE_METERS_TO_SQUARE_MILES = 3.86102159e-7;
    public static final double SQUARE_METERS_TO_SQUARE_YARDS = 1.19599005;
    public static final double SQUARE_METERS_TO_SQUARE_FEET = 10.7639104;
    public static final double SQUARE_METERS_TO_HECTARES = 1e-4;
    public static final double SQUARE_METERS_TO_ACRES = 0.000247105381;

    public static final LatLon LONGITUDE_OFFSET_180 = LatLon.fromDegrees(0, 180);

    /**
     * Convenience method to compute the log base 2 of a value.
     *
     * @param value the value to take the log of.
     *
     * @return the log base 2 of the specified value.
     */
    public static double logBase2(double value)
    {
        return Math.log(value) / Math.log(2d);
    }

    /**
     * Convenience method for testing whether a value is a power of two.
     *
     * @param value the value to test for power of 2
     *
     * @return true if power of 2, else false
     */
    public static boolean isPowerOfTwo(int value)
    {
        return (value == powerOfTwoCeiling(value));
    }

    /**
     * Returns the value that is the nearest power of 2 greater than or equal to the given value.
     *
     * @param reference the reference value. The power of 2 returned is greater than or equal to this value.
     *
     * @return the value that is the nearest power of 2 greater than or equal to the reference value
     */
    public static int powerOfTwoCeiling(int reference)
    {
        int power = (int) Math.ceil(Math.log(reference) / Math.log(2d));
        return (int) Math.pow(2d, power);
    }

    /**
     * Returns the value that is the nearest power of 2 less than or equal to the given value.
     *
     * @param reference the reference value. The power of 2 returned is less than or equal to this value.
     *
     * @return the value that is the nearest power of 2 less than or equal to the reference value
     */
    public static int powerOfTwoFloor(int reference)
    {
        int power = (int) Math.floor(Math.log(reference) / Math.log(2d));
        return (int) Math.pow(2d, power);
    }

    /**
     * Populate an array with the successive powers of a number.
     *
     * @param base      the number whose powers to compute.
     * @param numPowers the number of powers to compute.
     *
     * @return an array containing the requested values. Each element contains the value b^i, where b is the base and i
     *         is the element number (0, 1, etc.).
     */
    protected static int[] computePowers(int base, int numPowers)
    {
        int[] powers = new int[numPowers];

        powers[0] = 1;
        for (int i = 1; i < numPowers; i++)
        {
            powers[i] += base * powers[i - 1];
        }

        return powers;
    }

    /**
     * Clamps a value to a given range.
     *
     * @param v   the value to clamp.
     * @param min the floor.
     * @param max the ceiling
     *
     * @return the nearest value such that min <= v <= max.
     */
    public static double clamp(double v, double min, double max)
    {
        return v < min ? min : v > max ? max : v;
    }

    /**
     * Clamps an integer value to a given range.
     *
     * @param v   the value to clamp.
     * @param min the floor.
     * @param max the ceiling
     *
     * @return the nearest value such that min <= v <= max.
     */
    public static int clamp(int v, int min, int max)
    {
        return v < min ? min : v > max ? max : v;
    }

    /**
     * Returns the interpolation factor for v given the specified range [x, y]. The
     * interpolation factor is a number between 0 and 1 (inclusive), representing the value's relative position between
     * x and y. For example, 0 corresponds to x, 1 corresponds to y,
     * and anything in between corresponds to a linear combination of x and y.
     *
     * @param v the value to compute the interpolation factor for.
     * @param x the first value.
     * @param y the second value.
     *
     * @return the interpolation factor for v given the specified range [x, y]
     */
    public static double computeInterpolationFactor(double v, double x, double y)
    {
        return clamp((v - x) / (y - x), 0d, 1d);
    }

    /**
     * Returns the linear interpolation of x and y according to the function: (1 - a) *
     * x + a * y. The interpolation factor a defines the weight given to each value, and is clamped
     * to the range [0, 1]. If a is 0 or less, this returns x. If a is 1 or more, this returns
     * y. Otherwise, this returns the linear interpolation of x and y. For
     * example, when a is 0.5 this returns (x + y)/2.
     *
     * @param a the interpolation factor.
     * @param x the first value.
     * @param y the second value.
     *
     * @return the linear interpolation of x and y.
     */
    public static double mix(double a, double x, double y)
    {
        double t = clamp(a, 0d, 1d);
        return x + t * (y - x);
    }

    /**
     * Returns the smooth hermite interpolation of x and y according to the function: (1
     * - t) * x + t * y, where t = a * a * (3 - 2 * a). The interpolation factor a
     * defines the weight given to each value, and is clamped to the range [0, 1]. If a is 0 or less, this
     * returns x. If a is 1 or more, this returns y. Otherwise, this returns the
     * smooth hermite interpolation of x and y. Like the linear function {@link #mix(double,
     * double, double)}, when a is 0.5 this returns (x + y)/2. But unlike the
     * linear function, the hermite function's slope gradually increases when a is near 0, then gradually
     * decreases when a is near 1. This is a useful property where a more gradual transition from
     * x to y is desired.
     *
     * @param a the interpolation factor.
     * @param x the first value.
     * @param y the second value.
     *
     * @return the smooth hermite interpolation of x and y.
     */
    public static double mixSmooth(double a, double x, double y)
    {
        double t = clamp(a, 0d, 1d);
        t = t * t * (3d - 2d * t);
        return x + t * (y - x);
    }

    /**
     * converts meters to feet.
     *
     * @param meters the value in meters.
     *
     * @return the value converted to feet.
     */
    public static double convertMetersToFeet(double meters)
    {
        return (meters * METERS_TO_FEET);
    }

    /**
     * converts meters to miles.
     *
     * @param meters the value in meters.
     *
     * @return the value converted to miles.
     */
    public static double convertMetersToMiles(double meters)
    {
        return (meters * METERS_TO_MILES);
    }

    /**
     * Converts distance in feet to distance in meters.
     *
     * @param feet the distance in feet.
     *
     * @return the distance converted to meters.
     */
    public static double convertFeetToMeters(double feet)
    {
        return (feet / METERS_TO_FEET);
    }

    /**
     * Converts time in seconds to time in milliseconds.
     *
     * @param seconds time in seconds.
     *
     * @return time in milliseconds.
     */
    public static double convertSecondsToMillis(double seconds)
    {
        return (seconds * SECOND_TO_MILLIS);
    }

    /**
     * Converts time in milliseconds to time in seconds.
     *
     * @param millis time in milliseconds.
     *
     * @return time in seconds.
     */
    public static double convertMillisToSeconds(double millis)
    {
        return millis / SECOND_TO_MILLIS;
    }

    /**
     * Converts time in minutes to time in milliseconds.
     *
     * @param minutes time in minutes.
     *
     * @return time in milliseconds.
     */
    public static double convertMinutesToMillis(double minutes)
    {
        return (minutes * MINUTE_TO_MILLIS);
    }

    /**
     * Converts time in milliseconds to time in minutes.
     *
     * @param millis time in milliseconds.
     *
     * @return time in minutes.
     */
    public static double convertMillisToMinutes(double millis)
    {
        return millis / MINUTE_TO_MILLIS;
    }

    /**
     * Converts time in hours to time in milliseconds.
     *
     * @param hours time in hours.
     *
     * @return time in milliseconds.
     */
    public static double convertHoursToMillis(double hours)
    {
        return (hours * HOUR_TO_MILLIS);
    }

    /**
     * Converts time in milliseconds to time in hours.
     *
     * @param mills time in milliseconds.
     *
     * @return time in hours.
     */
    public static double convertMillisToHours(double mills)
    {
        return mills / HOUR_TO_MILLIS;
    }

    /**
     * Convert time in days to time in milliseconds.
     *
     * @param millis time in days.
     *
     * @return time in milliseconds.
     */
    public static double convertDaysToMillis(double millis)
    {
        return millis * DAY_TO_MILLIS;
    }

    /**
     * Convert time in milliseconds to time in days.
     *
     * @param millis time in milliseconds.
     *
     * @return time in days.
     */
    public static double convertMillisToDays(double millis)
    {
        return millis / DAY_TO_MILLIS;
    }

    /**
     * Returns the distance in model coordinates from the {@link gov.nasa.worldwind.View} eye point to the specified
     * {@link gov.nasa.worldwind.geom.Extent}. If the View eye point is inside the extent, this returns 0.
     *
     * @param dc     the {@link gov.nasa.worldwind.render.DrawContext} which the View eye point is obtained from.
     * @param extent the extent to compute the distance from.
     *
     * @return the distance from the View eye point to the extent, in model coordinates.
     *
     * @throws IllegalArgumentException if either the DrawContext or the extent is null.
     */
    public static double computeDistanceFromEye(DrawContext dc, Extent extent)
    {
        if (dc == null)
        {
            String message = Logging.getMessage("nullValue.DrawContextIsNull");
            Logging.logger().severe(message);
            throw new IllegalArgumentException(message);
        }

        if (extent == null)
        {
            String message = Logging.getMessage("nullValue.ExtentIsNull");
            Logging.logger().severe(message);
            throw new IllegalArgumentException(message);
        }

        double distance = dc.getView().getEyePoint().distanceTo3(extent.getCenter()) - extent.getRadius();
        return (distance < 0d) ? 0d : distance;
    }

    /**
     * Returns the size in window coordinates of the specified {@link gov.nasa.worldwind.geom.Extent} from the current
     * {@link gov.nasa.worldwind.View}. The returned size is an estimate of the Extent's diameter in window
     * coordinates.
     *
     * @param dc     the current draw context, from which the View is obtained from.
     * @param extent the extent to compute the window size for.
     *
     * @return size of the specified Extent from the specified View, in window coordinates (screen pixels).
     *
     * @throws IllegalArgumentException if either the DrawContext or the extent is null.
     */
    public static double computeSizeInWindowCoordinates(DrawContext dc, Extent extent)
    {
        if (dc == null)
        {
            String message = Logging.getMessage("nullValue.DrawContextIsNull");
            Logging.logger().severe(message);
            throw new IllegalArgumentException(message);
        }

        if (extent == null)
        {
            String message = Logging.getMessage("nullValue.ExtentIsNull");
            Logging.logger().severe(message);
            throw new IllegalArgumentException(message);
        }

        // Estimate the size in window coordinates W from as follows. Given
        // R, the extent radius in meters
        // D, the distance from eye point to extent center, in meters
        //
        // compute S, the size of screen pixel at D, in meters/pixels. S is an estimate based on the viewport
        // size, the view projection, and D.
        //
        // Finally, estimate W, the extent's diameter in window coordinates (screen pixels).
        //
        // W : 2R * 1/S = (2R meters / S meters) * 1 pixels = 2R/S pixels

        double distance = dc.getView().getEyePoint().distanceTo3(extent.getCenter());
        double pixelSize = dc.getView().computePixelSizeAtDistance(distance);
        return 2d * extent.getRadius() / pixelSize;
    }

    /**
     * Computes the area in square pixels of a sphere after it is projected into the specified view's
     * viewport. The returned value is the screen area that the sphere covers in the infinite plane defined by the
     * view's viewport. This area is not limited to the size of the view's viewport, and
     * portions of the sphere are not clipped by the view's frustum.
     * 

* This returns zero if the specified radius is zero. * * @param view the View for which to compute a projected screen area. * @param center the sphere's center point, in model coordinates. * @param radius the sphere's radius, in meters. * * @return the projected screen area of the sphere in square pixels. * * @throws IllegalArgumentException if the view is null, if center is * null, or if radius is less than zero. */ public static double computeSphereProjectedArea(View view, Vec4 center, double radius) { if (view == null) { String message = Logging.getMessage("nullValue.ViewIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (center == null) { String message = Logging.getMessage("nullValue.CenterIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (radius < 0) { String message = Logging.getMessage("Geom.RadiusIsNegative", radius); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (radius == 0) return 0; // Compute the sphere's area by scaling its radius based on the sphere's depth in eye coordinates. This provides // a good approximation of the sphere's projected area, but does not provide an exact value: the perspective // projection of a sphere is an ellipse. // Compute the sphere's depth in eye coordinates by transforming the center point into eye coordinates and using // its absolute z-value as the depth value. Then compute the radius in pixels by dividing the radius in meters // by the number of meters per pixel at the sphere's depth. double depth = Math.abs(center.transformBy4(view.getModelviewMatrix()).z); double radiusInPixels = radius / view.computePixelSizeAtDistance(depth); return Math.PI * radiusInPixels * radiusInPixels; } /** * Computes a unit-length normal vector for a buffer of coordinate triples. The normal vector is computed from the * first three non-colinear points in the buffer. * * @param coords the coordinates. This method returns null if this argument is null. * @param stride the number of floats between successive points. 0 indicates that the points are arranged one * immediately after the other. * * @return the computed unit-length normal vector, or null if a normal vector could not be computed. */ public static Vec4 computeBufferNormal(FloatBuffer coords, int stride) { Vec4[] verts = WWMath.findThreeIndependentVertices(coords, stride); return verts != null ? WWMath.computeTriangleNormal(verts[0], verts[1], verts[2]) : null; } /** * Computes a unit-length normal vector for an array of coordinates. The normal vector is computed from the first * three non-colinear points in the array. * * @param coords the coordinates. This method returns null if this argument is null. * * @return the computed unit-length normal vector, or null if a normal vector could not be computed. */ public static Vec4 computeArrayNormal(Vec4[] coords) { Vec4[] verts = WWMath.findThreeIndependentVertices(coords); return verts != null ? WWMath.computeTriangleNormal(verts[0], verts[1], verts[2]) : null; } /** * Finds three non-colinear points in a buffer. * * @param coords the coordinates. This method returns null if this argument is null. * @param stride the number of floats between successive points. 0 indicates that the points are arranged one * immediately after the other. * * @return an array of three points, or null if three non-colinear points could not be found. */ public static Vec4[] findThreeIndependentVertices(FloatBuffer coords, int stride) { int xstride = stride > 0 ? stride : 3; if (coords == null || coords.limit() < 3 * xstride) return null; Vec4 a = new Vec4(coords.get(0), coords.get(1), coords.get(2)); Vec4 b = null; Vec4 c = null; int k = xstride; for (; k < coords.limit(); k += xstride) { b = new Vec4(coords.get(k), coords.get(k + 1), coords.get(k + 2)); if (!(b.x == a.x && b.y == a.y && b.z == a.z)) break; b = null; } if (b == null) return null; for (k += xstride; k < coords.limit(); k += xstride) { c = new Vec4(coords.get(k), coords.get(k + 1), coords.get(k + 2)); // if c is not coincident with a or b, and the vectors ab and bc are not colinear, break and return a, b, c if (!((c.x == a.x && c.y == a.y && c.z == a.z) || (c.x == b.x && c.y == b.y && c.z == b.z))) { if (!Vec4.areColinear(a, b, c)) break; } c = null; // reset c to signal failure to return statement below } return c != null ? new Vec4[] {a, b, c} : null; } /** * Finds three non-colinear points in an array of points. * * @param coords the coordinates. This method returns null if this argument is null. * * @return an array of three points, or null if three non-colinear points could not be found. */ public static Vec4[] findThreeIndependentVertices(Vec4[] coords) { if (coords == null || coords.length < 3) return null; Vec4 a = coords[0]; Vec4 b = null; Vec4 c = null; int k = 1; for (; k < coords.length; k++) { b = coords[k]; if (!(b.x == a.x && b.y == a.y && b.z == a.z)) break; b = null; } if (b == null) return null; for (; k < coords.length; k++) { c = coords[k]; // if c is not coincident with a or b, and the vectors ab and bc are not colinear, break and return a, b, c if (!((c.x == a.x && c.y == a.y && c.z == a.z) || (c.x == b.x && c.y == b.y && c.z == b.z))) { if (!Vec4.areColinear(a, b, c)) break; } c = null; // reset c to signal failure to return statement below } return c != null ? new Vec4[] {a, b, c} : null; } /** * Returns the normal vector corresponding to the triangle defined by three vertices (a, b, c). * * @param a the triangle's first vertex. * @param b the triangle's second vertex. * @param c the triangle's third vertex. * * @return the triangle's unit-length normal vector. * * @throws IllegalArgumentException if any of the specified vertices are null. */ public static Vec4 computeTriangleNormal(Vec4 a, Vec4 b, Vec4 c) { if (a == null || b == null || c == null) { String message = Logging.getMessage("nullValue.Vec4IsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } double x = ((b.y - a.y) * (c.z - a.z)) - ((b.z - a.z) * (c.y - a.y)); double y = ((b.z - a.z) * (c.x - a.x)) - ((b.x - a.x) * (c.z - a.z)); double z = ((b.x - a.x) * (c.y - a.y)) - ((b.y - a.y) * (c.x - a.x)); double length = (x * x) + (y * y) + (z * z); if (length == 0d) return new Vec4(x, y, z); length = Math.sqrt(length); return new Vec4(x / length, y / length, z / length); } /** * Returns the area enclosed by the specified (x, y) points (the z and w coordinates are ignored). If the specified * points do not define a closed loop, then the loop is automatically closed by simulating appending the first point * to the last point. * * @param points the (x, y) points which define the 2D polygon. * * @return the area enclosed by the specified coordinates. * * @throws IllegalArgumentException if points is null. */ public static double computePolygonAreaFromVertices(Iterable points) { if (points == null) { String message = Logging.getMessage("nullValue.IterableIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } java.util.Iterator iter = points.iterator(); if (!iter.hasNext()) { return 0; } double area = 0; Vec4 firstPoint = iter.next(); Vec4 point = firstPoint; while (iter.hasNext()) { Vec4 nextLocation = iter.next(); area += point.x * nextLocation.y; area -= nextLocation.x * point.y; point = nextLocation; } // Include the area connecting the last point to the first point, if they're not already equal. if (!point.equals(firstPoint)) { area += point.x * firstPoint.y; area -= firstPoint.x * point.y; } area /= 2.0; return area; } /** * Returns the winding order of the polygon described by the specified locations, with respect to an axis * perpendicular to the (lat, lon) coordinates, and pointing in the direction of "positive elevation". * * @param locations the locations defining the geographic polygon. * * @return {@link AVKey#CLOCKWISE} if the polygon has clockwise winding order, and {@link AVKey#COUNTER_CLOCKWISE} * otherwise. */ public static String computeWindingOrderOfLocations(Iterable locations) { if (locations == null) { String message = Logging.getMessage("nullValue.IterableIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } java.util.Iterator iter = locations.iterator(); if (!iter.hasNext()) return AVKey.COUNTER_CLOCKWISE; if (LatLon.locationsCrossDateLine(locations)) iter = LatLon.makeDatelineCrossingLocationsPositive(locations).iterator(); double area = 0; LatLon firstLocation = iter.next(); LatLon location = firstLocation; while (iter.hasNext()) { LatLon nextLocation = iter.next(); area += location.getLongitude().degrees * nextLocation.getLatitude().degrees; area -= nextLocation.getLongitude().degrees * location.getLatitude().degrees; location = nextLocation; } // Include the area connecting the last point to the first point, if they're not already equal. if (!location.equals(firstLocation)) { area += location.getLongitude().degrees * firstLocation.getLatitude().degrees; area -= firstLocation.getLongitude().degrees * location.getLatitude().degrees; } return (area < 0) ? AVKey.CLOCKWISE : AVKey.COUNTER_CLOCKWISE; } /** * Returns the winding order of the 2D polygon described by the specified (x, y) points (z and w coordinates are * ignored), with respect to the positive z axis. * * @param points the (x, y) points which define the 2D polygon. * * @return AVKey.CLOCKWISE if the polygon has clockwise winding order about the positive z axis, and * AVKey.COUNTER_CLOCKWISE otherwise. */ public static String computeWindingOrderOfVertices(Iterable points) { if (points == null) { String message = Logging.getMessage("nullValue.IterableIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } double area = computePolygonAreaFromVertices(points); return (area < 0) ? AVKey.CLOCKWISE : AVKey.COUNTER_CLOCKWISE; } /** * Returns an array of normalized vectors defining the three principal axes of the x-, y-, and z-coordinates from * the specified points Iterable, sorted from the most prominent axis to the least prominent. This returns null if * the points Iterable is empty, or if all of the points are null. The returned array contains three normalized * orthogonal vectors defining a coordinate system which best fits the distribution of the points Iterable about its * arithmetic mean. * * @param points the Iterable of points for which to compute the principal axes. * * @return the normalized principal axes of the points Iterable, sorted from the most prominent axis to the least * prominent. * * @throws IllegalArgumentException if the points Iterable is null. */ public static Vec4[] computePrincipalAxes(Iterable points) { if (points == null) { String message = Logging.getMessage("nullValue.IterableIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } // Compute the covariance matrix of the specified points Iterable. Note that Matrix.fromCovarianceOfVertices // returns null if the points Iterable is empty, or if all of the points are null. Matrix covariance = Matrix.fromCovarianceOfVertices(points); if (covariance == null) return null; // Compute the eigenvalues and eigenvectors of the covariance matrix. Since the covariance matrix is symmetric // by definition, we can safely use the method Matrix.computeEigensystemFromSymmetricMatrix3(). final double[] eigenValues = new double[3]; final Vec4[] eigenVectors = new Vec4[3]; Matrix.computeEigensystemFromSymmetricMatrix3(covariance, eigenValues, eigenVectors); // Compute an index array who's entries define the order in which the eigenValues array can be sorted in // ascending order. Integer[] indexArray = {0, 1, 2}; Arrays.sort(indexArray, new Comparator() { public int compare(Integer a, Integer b) { return Double.compare(eigenValues[a], eigenValues[b]); } }); // Return the normalized eigenvectors in order of decreasing eigenvalue. This has the effect of returning three // normalized orthognal vectors defining a coordinate system, which are sorted from the most prominent axis to // the least prominent. return new Vec4[] { eigenVectors[indexArray[2]].normalize3(), eigenVectors[indexArray[1]].normalize3(), eigenVectors[indexArray[0]].normalize3() }; } /** * Returns an array of normalized vectors defining the three principal axes of the x-, y-, and z-coordinates from * the specified buffer of points, sorted from the most prominent axis to the least prominent. This returns null if * the buffer is empty. The returned array contains three normalized orthogonal vectors defining a coordinate system * which best fits the distribution of the points about its arithmetic mean. *

* The buffer must contain XYZ coordinate tuples which are either tightly packed or offset by the specified stride. * The stride specifies the number of buffer elements between the first coordinate of consecutive tuples. For * example, a stride of 3 specifies that each tuple is tightly packed as XYZXYZXYZ, whereas a stride of 5 specifies * that there are two elements between each tuple as XYZabXYZab (the elements "a" and "b" are ignored). The stride * must be at least 3. If the buffer's length is not evenly divisible into stride-sized tuples, this ignores the * remaining elements that follow the last complete tuple. * * @param coordinates the buffer containing the point coordinates for which to compute the principal axes. * @param stride the number of elements between the first coordinate of consecutive points. If stride is 3, * this interprets the buffer has having tightly packed XYZ coordinate tuples. * * @return the normalized principal axes of the points, sorted from the most prominent axis to the least prominent. * * @throws IllegalArgumentException if the buffer is null, or if the stride is less than three. */ public static Vec4[] computePrincipalAxes(BufferWrapper coordinates, int stride) { if (coordinates == null) { String message = Logging.getMessage("nullValue.CoordinatesAreNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (stride < 3) { String msg = Logging.getMessage("generic.StrideIsInvalid"); Logging.logger().severe(msg); throw new IllegalArgumentException(msg); } // Compute the covariance matrix of the specified points Iterable. Note that Matrix.fromCovarianceOfVertices // returns null if the points Iterable is empty, or if all of the points are null. Matrix covariance = Matrix.fromCovarianceOfVertices(coordinates, stride); if (covariance == null) return null; // Compute the eigenvalues and eigenvectors of the covariance matrix. Since the covariance matrix is symmetric // by definition, we can safely use the method Matrix.computeEigensystemFromSymmetricMatrix3(). final double[] eigenValues = new double[3]; final Vec4[] eigenVectors = new Vec4[3]; Matrix.computeEigensystemFromSymmetricMatrix3(covariance, eigenValues, eigenVectors); // Compute an index array who's entries define the order in which the eigenValues array can be sorted in // ascending order. Integer[] indexArray = {0, 1, 2}; Arrays.sort(indexArray, new Comparator() { public int compare(Integer a, Integer b) { return Double.compare(eigenValues[a], eigenValues[b]); } }); // Return the normalized eigenvectors in order of decreasing eigenvalue. This has the effect of returning three // normalized orthognal vectors defining a coordinate system, which are sorted from the most prominent axis to // the least prominent. return new Vec4[] { eigenVectors[indexArray[2]].normalize3(), eigenVectors[indexArray[1]].normalize3(), eigenVectors[indexArray[0]].normalize3() }; } /** * Returns whether the geographic polygon described by the specified locations defines a closed loop. If the * iterable holds fewer than two points, this always returns false. Therefore a polygon consisting of a single point * and the empty polygon are not considered closed loops. * * @param locations the locations which define the geographic polygon. * * @return true if the polygon defines a closed loop, and false otherwise. * * @throws IllegalArgumentException if the locations are null. */ public static boolean isPolygonClosed(Iterable locations) { if (locations == null) { String message = Logging.getMessage("nullValue.IterableIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } java.util.Iterator iter = locations.iterator(); if (!iter.hasNext()) { return false; } LatLon firstLocation = iter.next(); LatLon lastLocation = null; while (iter.hasNext()) { lastLocation = iter.next(); } return (lastLocation != null) && lastLocation.equals(firstLocation); } /** * Returns whether the 2D polygon described by the specified (x, y) points defines a closed loop (z and w * coordinates are ignored). If the iterable holds fewer than two points, this always returns false. Therefore a * polygon consisting of a single point and the empty polygon are not considered closed loops. * * @param points the (x, y) points which define the 2D polygon. * * @return true if the polygon defines a closed loop, and false otherwise. * * @throws IllegalArgumentException if the points are null. */ public static boolean isPolygonClosed2(Iterable points) { if (points == null) { String message = Logging.getMessage("nullValue.IterableIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } java.util.Iterator iter = points.iterator(); if (!iter.hasNext()) { return false; } Vec4 firstPoint = iter.next(); Vec4 lastPoint = null; while (iter.hasNext()) { lastPoint = iter.next(); } return (lastPoint != null) && (lastPoint.x == firstPoint.x) && (lastPoint.y == firstPoint.y); } // TODO: this is only valid for linear path type /** * Determines whether a {@link LatLon} location is located inside a given polygon. * * @param location the location * @param locations the list of positions describing the polygon. Last one should be the same as the first one. * * @return true if the location is inside the polygon. */ public static boolean isLocationInside(LatLon location, Iterable locations) { if (location == null) { String message = Logging.getMessage("nullValue.LatLonIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } java.util.Iterator iter = locations.iterator(); if (!iter.hasNext()) { return false; } // Test for even/odd number of intersections with a constant latitude line going through the given location. boolean result = false; LatLon p1 = iter.next(); while (iter.hasNext()) { LatLon p2 = iter.next(); // Developped for clarity // double lat = location.getLatitude().degrees; // double lon = location.getLongitude().degrees; // double lat1 = p1.getLatitude().degrees; // double lon1 = p1.getLongitude().degrees; // double lat2 = p2.getLatitude().degrees; // double lon2 = p2.getLongitude().degrees; // if ( ((lat2 <= lat && lat < lat1) || (lat1 <= lat && lat < lat2)) // && (lon < (lon1 - lon2) * (lat - lat2) / (lat1 - lat2) + lon2) ) // result = !result; if (((p2.getLatitude().degrees <= location.getLatitude().degrees && location.getLatitude().degrees < p1.getLatitude().degrees) || (p1.getLatitude().degrees <= location.getLatitude().degrees && location.getLatitude().degrees < p2.getLatitude().degrees)) && (location.getLongitude().degrees < (p1.getLongitude().degrees - p2.getLongitude().degrees) * (location.getLatitude().degrees - p2.getLatitude().degrees) / (p1.getLatitude().degrees - p2.getLatitude().degrees) + p2.getLongitude().degrees)) result = !result; p1 = p2; } return result; } /** * Computes the center, axis, and radius of the circle that circumscribes the specified points. If the points are * oriented in a clockwise winding order, the circle's axis will point toward the viewer. Otherwise the axis will * point away from the viewer. Values are returned in the first element of centerOut, axisOut, and radiusOut. The * caller must provide a preallocted arrays of length one or greater for each of these values. * * @param p0 the first point. * @param p1 the second point. * @param p2 the third point. * @param centerOut preallocated array to hold the circle's center. * @param axisOut preallocated array to hold the circle's axis. * @param radiusOut preallocated array to hold the circle's radius. * * @return true if the computation was successful; false otherwise. * * @throws IllegalArgumentException if p0, p1, or p2 is null */ public static boolean computeCircleThroughPoints(Vec4 p0, Vec4 p1, Vec4 p2, Vec4[] centerOut, Vec4[] axisOut, double[] radiusOut) { if (p0 == null || p1 == null || p2 == null) { String msg = Logging.getMessage("nullValue.Vec4IsNull"); Logging.logger().severe(msg); throw new IllegalArgumentException(msg); } Vec4 v0 = p1.subtract3(p0); Vec4 v1 = p2.subtract3(p1); Vec4 v2 = p2.subtract3(p0); double d0 = v0.dot3(v2); double d1 = -v0.dot3(v1); double d2 = v1.dot3(v2); double t0 = d1 + d2; double t1 = d0 + d2; double t2 = d0 + d1; double e0 = d0 * t0; double e1 = d1 * t1; double e2 = d2 * t2; double max_e = Math.max(Math.max(e0, e1), e2); double min_e = Math.min(Math.min(e0, e1), e2); double E = e0 + e1 + e2; double tolerance = 1e-6; if (Math.abs(E) <= tolerance * (max_e - min_e)) return false; double radiusSquared = 0.5d * t0 * t1 * t2 / E; // the three points are collinear -- no circle with finite radius is possible if (radiusSquared < 0d) return false; double radius = Math.sqrt(radiusSquared); Vec4 center = p0.multiply3(e0 / E); center = center.add3(p1.multiply3(e1 / E)); center = center.add3(p2.multiply3(e2 / E)); Vec4 axis = v2.cross3(v0); axis = axis.normalize3(); if (centerOut != null) centerOut[0] = center; if (axisOut != null) axisOut[0] = axis; if (radiusOut != null) radiusOut[0] = radius; return true; } /** * Intersect a line with a convex polytope and return the intersection points. *

* See "3-D Computer Graphics" by Samuel R. Buss, 2005, Section X.1.4. * * @param line the line to intersect with the polytope. * @param planes the planes defining the polytope. Each plane's normal must point away from the the polytope, i.e. * each plane's positive halfspace is outside the polytope. (Note: This is the opposite convention * from that of a view frustum.) * * @return the points of intersection, or null if the line does not intersect the polytope. Two points are returned * if the line both enters and exits the polytope. One point is retured if the line origin is within the * polytope. * * @throws IllegalArgumentException if the line is null or ill-formed, the planes array is null or there are fewer * than three planes. */ public static Intersection[] polytopeIntersect(Line line, Plane[] planes) { if (line == null) { String message = Logging.getMessage("nullValue.LineIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } // Algorithm from "3-D Computer Graphics" by Samuel R. Buss, 2005, Section X.1.4. // Determine intersection with each plane and categorize the intersections as "front" if the line intersects // the front side of the plane (dot product of line direction with plane normal is negative) and "back" if the // line intersects the back side of the plane (dot product of line direction with plane normal is positive). double fMax = -Double.MAX_VALUE; double bMin = Double.MAX_VALUE; boolean isTangent = false; Vec4 u = line.getDirection(); Vec4 p = line.getOrigin(); for (Plane plane : planes) { Vec4 n = plane.getNormal(); double d = -plane.getDistance(); double s = u.dot3(n); if (s == 0) // line is parallel to plane { double pdn = p.dot3(n); if (pdn > d) // is line in positive halfspace (in front of) of the plane? return null; // no intersection else { if (pdn == d) isTangent = true; // line coincident with plane continue; // line is in negative halfspace; possible intersection; check other planes } } // Determine whether front or back intersection. double a = (d - p.dot3(n)) / s; if (u.dot3(n) < 0) // line intersects front face and therefore entering polytope { if (a > fMax) { if (a > bMin) return null; fMax = a; } } else // line intersects back face and therefore leaving polytope { if (a < bMin) { if (a < 0 || a < fMax) return null; bMin = a; } } } // Compute the Cartesian intersection points. There will be no more than two. if (fMax >= 0) // intersects frontface and backface; point origin is outside the polytope return new Intersection[] { new Intersection(p.add3(u.multiply3(fMax)), isTangent), new Intersection(p.add3(u.multiply3(bMin)), isTangent) }; else // intersects backface only; point origin is within the polytope return new Intersection[] {new Intersection(p.add3(u.multiply3(bMin)), isTangent)}; } //**************************************************************// //******************** Geometry Construction ******************// //**************************************************************// /** * Computes an index buffer in the system native byte order that tessellates the interior of a vertex grid as a * triangle strip. The returned buffer may be used as the source buffer in a call to {@link * javax.media.opengl.GL2#glDrawElements(int, int, int, java.nio.Buffer)}, where mode is {@link * javax.media.opengl.GL#GL_TRIANGLE_STRIP}, count is the number of elements remaining in the buffer, * and type is {@link javax.media.opengl.GL#GL_UNSIGNED_INT}. *

* For details the drawing OpenGL primitives, see http://www.glprogramming.com/red/chapter02.html#name14. * * @param width the patch width, in vertices. * @param height the patch height, in vertices. * * @return an index buffer that tessellate's the grid interior as a triangle strip. * * @throws IllegalArgumentException if either the width or height are less than or equal to zero. */ public static IntBuffer computeIndicesForGridInterior(int width, int height) { if (width <= 0) { String message = Logging.getMessage("Geom.WidthInvalid", width); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (height <= 0) { String message = Logging.getMessage("Geom.HeightInvalid", width); Logging.logger().severe(message); throw new IllegalArgumentException(message); } int numIndices = (height - 1) * (2 * width) + (2 * (height - 2)); IntBuffer buffer = Buffers.newDirectIntBuffer(numIndices); int pos; for (int y = 0; y < height - 1; y++) { if (y != 0) { buffer.put((width - 1) + (y - 1) * width); buffer.put(width + y * width); } for (int x = 0; x < width; x++) { pos = x + y * width; buffer.put(pos + width); buffer.put(pos); } } buffer.rewind(); return buffer; } /** * Computes an index buffer in the system native byte order that tessellates the outline of a vertex grid as a line * strip. The returned buffer may be used as the source buffer in a call to {@link * javax.media.opengl.GL2#glDrawElements(int, int, int, java.nio.Buffer)}, where mode is {@link * javax.media.opengl.GL#GL_LINE_STRIP}, count is the number of elements remaining in the buffer, and * type is {@link javax.media.opengl.GL#GL_UNSIGNED_INT}. *

* For details the drawing OpenGL primitives, see http://www.glprogramming.com/red/chapter02.html#name14. * * @param width the patch width, in vertices. * @param height the patch height, in vertices. * * @return an index buffer that tessellates the grid outline as a line strip. * * @throws IllegalArgumentException if either the width or height are less than or equal to zero. */ public static IntBuffer computeIndicesForGridOutline(int width, int height) { if (width <= 0) { String message = Logging.getMessage("Geom.WidthInvalid", width); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (height <= 0) { String message = Logging.getMessage("Geom.HeightInvalid", width); Logging.logger().severe(message); throw new IllegalArgumentException(message); } int numIndices = 2 * (width + height - 2); IntBuffer buffer = Buffers.newDirectIntBuffer(numIndices); for (int x = 0; x < width; x++) { buffer.put(x); } for (int y = 1; y < height - 1; y++) { buffer.put((width - 1) + y * width); } for (int x = width - 1; x >= 0; x--) { buffer.put(x + (height - 1) * width); } for (int y = height - 2; y >= 1; y--) { buffer.put(y * width); } buffer.rewind(); return buffer; } /** * Computes per-vertex normals of an indexed triangle strip, storing the normal coordinates in the specified normal * buffer. If the normal buffer is null, this creates a new buffer in the system native byte order with the capacity * to store the same number of vertices as the vertex buffer. The vertex buffer is assumed to contain tightly packed * 3-coordinate tuples. The 3-coordinate normal for each vertex is stored in the normal buffer at the same position * each vertex appears in the vertex buffer. *

* For details the drawing OpenGL primitives, see http://www.glprogramming.com/red/chapter02.html#name14. * * @param indices indices into the vertex buffer defining a triangle strip. * @param vertices buffer of vertex coordinate tuples used to compute the normal coordinates. * @param normals buffer of normal coordinate tuples that receives the normal coordinates, or null to create a new * buffer to hold the normal coordinates. * * @return buffer of normal coordinate tuples. * * @throws IllegalArgumentException if either the index buffer or the vertex buffer is null. */ public static FloatBuffer computeNormalsForIndexedTriangleStrip(IntBuffer indices, FloatBuffer vertices, FloatBuffer normals) { if (indices == null) { String message = Logging.getMessage("nullValue.IndexBufferIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (vertices == null) { String message = Logging.getMessage("nullValue.VertexBufferNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } int numIndices = indices.remaining(); int numVertices = vertices.remaining() / 3; // If the normal buffer is null, create a new one with the capacity to store the same number of vertices as // the vertex buffer. Otherwise, initialize the normal buffer by setting all normal coordinate to zero. if (normals == null) normals = Buffers.newDirectFloatBuffer(3 * numVertices); else { for (int i = 0; i < numVertices; i++) { normals.put(0); normals.put(0); normals.put(0); } normals.rewind(); } // Compute the normal for each face, then add that normal to each individual vertex of the face. After this step // each normal contains the accumulated normal values from each face it contributes to. int[] triangle = new int[3]; for (int i = 2; i < numIndices; i++) { indices.position(i - 2); indices.get(triangle); // Triangle strips alternate between counter-clockwise and clockwise winding order each triangle. Triangles // starting with an even index are clockwise, while those starting with an odd index are counter-clockwise. // Reverse the face's vertex order for even triangles to ensure that all faces have counter-clockwise // ordering. if ((i % 2) != 0) { int tmp = triangle[0]; triangle[0] = triangle[1]; triangle[1] = tmp; } addTriangleNormal(3 * triangle[0], 3 * triangle[1], 3 * triangle[2], vertices, normals); } indices.rewind(); vertices.rewind(); normals.rewind(); // Normalize each tuple. Each normal contains the accumulated normal values from each face it contributes to // Normalizing the tuple averages the accumulated normals from each face, and ensures that the normal has unit // length. for (int i = 0; i < numVertices; i++) { // Normalizes the tuple and the buffer's position then advances to the next tuple. normalize3(normals); } normals.rewind(); return normals; } /** * Computes a triangle normal given the starting position of three tuples in the specified vertex buffer, and stores * adds the result to three tuples in the specified normal buffer with the same positions. * * @param a the first tuple's starting position. * @param b the second tuple's starting position. * @param c the third tuple's starting position. * @param vertices buffer of vertex coordinate tuples used to compute the normal coordinates. * @param normals buffer of normal coordinate tuples that receives the normal coordinates. */ protected static void addTriangleNormal(int a, int b, int c, FloatBuffer vertices, FloatBuffer normals) { vertices.position(a); float ax = vertices.get(); float ay = vertices.get(); float az = vertices.get(); vertices.position(b); float bx = vertices.get(); float by = vertices.get(); float bz = vertices.get(); vertices.position(c); float cx = vertices.get(); float cy = vertices.get(); float cz = vertices.get(); float x = ((by - ay) * (cz - az)) - ((bz - az) * (cy - ay)); float y = ((bz - az) * (cx - ax)) - ((bx - ax) * (cz - az)); float z = ((bx - ax) * (cy - ay)) - ((by - ay) * (cx - ax)); float length = (x * x) + (y * y) + (z * z); if (length > 0d) { length = (float) Math.sqrt(length); x /= length; y /= length; z /= length; } normals.position(a); float nx = normals.get(); float ny = normals.get(); float nz = normals.get(); normals.position(a); normals.put(nx + x); normals.put(ny + y); normals.put(nz + z); normals.position(b); nx = normals.get(); ny = normals.get(); nz = normals.get(); normals.position(b); normals.put(nx + x); normals.put(ny + y); normals.put(nz + z); normals.position(c); nx = normals.get(); ny = normals.get(); nz = normals.get(); normals.position(c); normals.put(nx + x); normals.put(ny + y); normals.put(nz + z); } /** * Normalizes the 3-coordinate tuple starting at the buffer's position, then advances the buffer's position to the * end of the tuple. * * @param buffer the buffer to normalize. * * @throws NullPointerException if the buffer is null. */ protected static void normalize3(FloatBuffer buffer) { int pos = buffer.position(); float x = buffer.get(); float y = buffer.get(); float z = buffer.get(); float length = (x * x) + (y * y) + (z * z); if (length > 0d) { length = (float) Math.sqrt(length); x /= length; y /= length; z /= length; } buffer.position(pos); buffer.put(x); buffer.put(y); buffer.put(z); } /** * Computes a line between two integer-coordinate points using Bresenham's algorithm. * * @param x0 the x coordinate of the first point. * @param y0 the y coordinate of the first point, relative to an upper-left origin. * @param x1 the x coordinate of the second point. * @param y1 the y coordinate of the second point, relative to an upper-left origin. * * @return a list of points defining a line between the two input points. */ public static List bresenham(int x0, int y0, int x1, int y1) { List points = new ArrayList(Math.abs(x1 - x0 + 1)); boolean steep = Math.abs(y1 - y0) > Math.abs(x1 - x0); if (steep) { int t = x0; //noinspection SuspiciousNameCombination x0 = y0; y0 = t; t = x1; //noinspection SuspiciousNameCombination x1 = y1; y1 = t; } if (x0 > x1) { int t = x0; x0 = x1; x1 = t; t = y0; y0 = y1; y1 = t; } int deltax = x1 - x0; int deltay = Math.abs(y1 - y0); int error = deltax / 2; int ystep = y0 < y1 ? 1 : -1; int y = y0; for (int x = x0; x <= x1; x += 1) { if (steep) points.add(new Point(y, x)); else points.add(new Point(x, y)); error -= deltay; if (error < 0) { y += ystep; error += deltax; } } return points; } /** * Create positions that describe lines parallel to a control line. * * @param controlPositions List of positions along the control line. Must be greater than 1. * @param leftPositions List to receive positions on the left line. * @param rightPositions List to receive positions on the right line. * @param distance Distance from the center line to the left and right lines. * @param globe Globe used to compute positions. * * @throws IllegalArgumentException if any of the lists are null, the number of control positions is less than 2, or * the globe is null. */ public static void generateParallelLines(List controlPositions, List leftPositions, List rightPositions, double distance, Globe globe) { if (controlPositions == null || leftPositions == null || rightPositions == null) { String message = Logging.getMessage("nullValue.PositionsListIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (controlPositions.size() < 2) { String message = Logging.getMessage("generic.LengthIsInvalid"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (globe == null) { String message = Logging.getMessage("nullValue.GlobeIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } // Starting at the start of the line, take points three at a time. B is the current control point, A is the next // point in the line, and C is the previous point. We need to a find a vector that bisects angle ABC. // B // ---------> C // / // / // / // A / Iterator iterator = controlPositions.iterator(); Position posB = iterator.next(); Position posA = iterator.next(); // Compute points, ignoring elevation. We will project the path onto the surface of the globe, compute the // parallel points on the surface, and then raise the points to the correct elevation. Vec4 ptA = globe.computePointFromLocation(posA); Vec4 ptB = globe.computePointFromLocation(posB); Vec4 ptC; // We'll keep track of the offset used to compute parallel points as we go through the list. We need this // to handle cases where the position list contains sequential co-located points. Vec4 prevOffset = null; // Compute side points at the start of the line. prevOffset = generateParallelPoints(ptB, null, ptA, leftPositions, rightPositions, distance, posB.getElevation(), globe, prevOffset); double prevElevation; while (iterator.hasNext()) { prevElevation = posA.getElevation(); posA = iterator.next(); ptC = ptB; ptB = ptA; ptA = globe.computePointFromLocation(posA); prevOffset = generateParallelPoints(ptB, ptC, ptA, leftPositions, rightPositions, distance, prevElevation, globe, prevOffset); } // Compute side points at the end of the line. generateParallelPoints(ptA, ptB, null, leftPositions, rightPositions, distance, posA.getElevation(), globe, prevOffset); } /** * Compute points on either side of a line segment. This method requires a point on the line, and either a next * point, previous point, or both. * * @param point Center point about which to compute side points. * @param prev Previous point on the line. May be null if {@code next} is non-null. * @param next Next point on the line. May be null if {@code prev} is non-null. * @param leftPositions Left position will be added to this list. * @param rightPositions Right position will be added to this list. * @param distance Distance from the center line to the left and right lines. * @param elevation Elevation at which to place the generated positions. * @param globe Globe used to compute positions. * @param previousOffset Offset vector from a previous call to this method. May be null. * * @return Offset vector that should be passed back to this method on the next call for a list of positions. (Used * to generate parallel points when a position list contains sequential co-located positions.) * * @throws IllegalArgumentException if the necessary point, previous or next references are null, either the left or * right position list is null, or the globe is null. */ public static Vec4 generateParallelPoints(Vec4 point, Vec4 prev, Vec4 next, List leftPositions, List rightPositions, double distance, double elevation, Globe globe, Vec4 previousOffset) { if ((point == null) || (prev == null && next == null)) { String message = Logging.getMessage("nullValue.PointIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (leftPositions == null || rightPositions == null) { String message = Logging.getMessage("nullValue.PositionsListIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } if (globe == null) { String message = Logging.getMessage("nullValue.GlobeIsNull"); Logging.logger().severe(message); throw new IllegalArgumentException(message); } Vec4 offset; Vec4 normal = globe.computeSurfaceNormalAtPoint(point); // Compute vector in the direction backward along the line. Vec4 backward = (prev != null) ? prev.subtract3(point) : point.subtract3(next); // Compute a vector perpendicular to segment BC, and the globe normal vector. Vec4 perpendicular = backward.cross3(normal); // If the current point is co-located with either the next or prev points, then reuse the previously computed offset. if (point.equals(prev) || (point.equals(next)) && previousOffset != null) { offset = previousOffset; } // If both next and previous points are supplied then calculate the angle that bisects the angle current, next, prev. else if (next != null && prev != null && !Vec4.areColinear(prev, point, next)) { // Compute vector in the forward direction. Vec4 forward = next.subtract3(point); // Calculate the vector that bisects angle ABC. offset = forward.normalize3().add3(backward.normalize3()); offset = offset.normalize3(); // Determine the length of the offset vector that will keep the left and right lines parallel to the control // line. Angle theta = backward.angleBetween3(offset); // If the angle is less than 1/10 of a degree than treat this segment as if it were linear. double length; if (theta.degrees > 0.1) length = distance / theta.sin(); else length = distance; // Compute the scalar triple product of the vector BC, the normal vector, and the offset vector to // determine if the offset points to the left or the right of the control line. double tripleProduct = perpendicular.dot3(offset); if (tripleProduct < 0) { offset = offset.multiply3(-1); } offset = offset.multiply3(length); } else { offset = perpendicular.normalize3(); offset = offset.multiply3(distance); } // Determine the left and right points by applying the offset. Vec4 ptRight = point.add3(offset); Vec4 ptLeft = point.subtract3(offset); // Convert cartesian points to geographic. Position posLeft = new Position(globe.computePositionFromPoint(ptLeft), elevation); Position posRight = new Position(globe.computePositionFromPoint(ptRight), elevation); leftPositions.add(posLeft); rightPositions.add(posRight); return offset; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy