
gov.sandia.cognition.learning.algorithm.gradient.GradientDescendable Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: GradientDescendable.java
* Authors: Justin Basilico and Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright February 21, 2006, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*/
package gov.sandia.cognition.learning.algorithm.gradient;
import gov.sandia.cognition.annotation.CodeReview;
import gov.sandia.cognition.annotation.CodeReviews;
import gov.sandia.cognition.math.matrix.Matrix;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorizableVectorFunction;
/**
* The GradientDescendable interface defines the functionality of an object
* that is required in order to apply the gradient descent algorithm to it.
* That is, GradientDescendable can differentiate its output with respect to
* its parameters for a given input.
*
* @author Justin Basilico
* @author Kevin R. Dixon
* @since 1.0
*/
@CodeReviews(
reviews={
@CodeReview(
reviewer="Kevin R. Dixon",
date="2008-07-23",
changesNeeded=false,
comments={
"Minor change to class javadoc.",
"Moved previous code review as CodeReview annotation",
"Looks fine."
}
)
,
@CodeReview(
reviewer="Justin Basilico",
date="2006-10-04",
changesNeeded=false,
comments="Interface looks fine."
)
}
)
public interface GradientDescendable
extends VectorizableVectorFunction,
ParameterGradientEvaluator
{
/**
* Computes the derivative of the function about the input with respect
* to the parameters of the function
* @param input Point about which to differentiate w.r.t. the parameters
* @return Matrix of parameter gradients
*/
public Matrix computeParameterGradient( Vector input );
public GradientDescendable clone();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy