All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerPolakRibiere Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/*
 * File:                FunctionMinimizerPolakRibiere.java
 * Authors:             Kevin R. Dixon
 * Company:             Sandia National Laboratories
 * Project:             Cognitive Foundry
 *
 * Copyright November 7, 2007, Sandia Corporation.  Under the terms of Contract
 * DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
 * or on behalf of the U.S. Government. Export of this program may require a
 * license from the United States Government. See CopyrightHistory.txt for
 * complete details.
 *
 */

package gov.sandia.cognition.learning.algorithm.minimization;

import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationReferences;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizer;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.util.ObjectUtil;

/**
 * This is an implementation of the Polack-Ribiere conjugate gradient
 * minimization procedure.  This is an unconstrained nonlinear optimization
 * technique that uses first-order derivative (gradient) information to
 * determine the direction of exact line searches.  This algorithm is generally
 * considered to be inferior to BFGS, but does not store an NxN Hessian inverse.
 * Thus, if you have many inputs (N), then the conjugate gradient minimization
 * may be better than BFGS for your problem.  But try BFGS first.
 * 

* The Polack-Ribiere CG variant used to be considered the best out there, * though I've run across a CG variant of Liu-Storey that appears to be * slightly better. In my experience, they both perform about equally, with * Liu-Storey slightly better. But try both before settling on one. * * @author Kevin R. Dixon * @since 2.0 * */ @PublicationReferences( references={ @PublicationReference( author="R. Fletcher", title="Practical Methods of Optimization, Second Edition", type=PublicationType.Book, year=1987, pages=83, notes="Equation 4.1.12" ) , @PublicationReference( author={ "William H. Press", "Saul A. Teukolsky", "William T. Vetterling", "Brian P. Flannery" }, title="Numerical Recipes in C, Second Edition", type=PublicationType.Book, year=1992, pages={423,424}, notes="Section 10.6", url="http://www.nrbook.com/a/bookcpdf.php" ) } ) public class FunctionMinimizerPolakRibiere extends FunctionMinimizerConjugateGradient { /** * Creates a new instance of FunctionMinimizerPolakRibiere */ public FunctionMinimizerPolakRibiere() { this( ObjectUtil.cloneSafe( DEFAULT_LINE_MINIMIZER ) ); } /** * Creates a new instance of FunctionMinimizerPolakRibiere * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction */ public FunctionMinimizerPolakRibiere( LineMinimizer lineMinimizer ) { this( lineMinimizer, null, DEFAULT_TOLERANCE, DEFAULT_MAX_ITERATIONS ); } /** * Creates a new instance of FunctionMinimizerConjugateGradient * * @param initialGuess Initial guess about the minimum of the method * @param tolerance * Tolerance of the minimization algorithm, must be >= 0.0, typically ~1e-10 * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction * @param maxIterations * Maximum number of iterations, must be >0, typically ~100 */ public FunctionMinimizerPolakRibiere( LineMinimizer lineMinimizer, Vector initialGuess, double tolerance, int maxIterations ) { super( lineMinimizer, initialGuess, tolerance, maxIterations ); } protected double computeScaleFactor( Vector gradientCurrent, Vector gradientPrevious ) { Vector deltaGradient = gradientCurrent.minus( gradientPrevious ); double deltaTgradient = deltaGradient.dotProduct( gradientCurrent ); double denom = gradientPrevious.norm2Squared(); double beta = deltaTgradient / denom; return beta; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy