gov.sandia.cognition.learning.function.scalar.LinearDiscriminantWithBias Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: LinearDiscriminantWithBias.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Sep 30, 2011, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.learning.function.scalar;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.math.matrix.Vectorizable;
/**
* A LinearDiscriminant with an additional bias term that gets added to the
* output of the dot product.
* @author Kevin R. Dixon
* @since 3.2.1
*/
public class LinearDiscriminantWithBias
extends LinearDiscriminant
{
/**
* Bias term that gets added to the output of the dot product.
*/
protected double bias;
/**
* Creates a new instance of LinearDiscriminantWithBias
*/
public LinearDiscriminantWithBias()
{
this( (Vector) null );
}
/**
* Creates a new instance of LinearClassifier
* @param weightVector
* Weight Vector to dot-product with the input
*/
public LinearDiscriminantWithBias(
final Vector weightVector )
{
this( weightVector, 0.0 );
}
/**
* Creates a new instance of LinearClassifier
* @param weightVector
* Weight Vector to dot-product with the input
* @param bias
* Bias term that gets added to the output of the dot product.
*/
public LinearDiscriminantWithBias(
final Vector weightVector,
final double bias )
{
super( weightVector );
this.setBias(bias);
}
@Override
public LinearDiscriminantWithBias clone()
{
return (LinearDiscriminantWithBias) super.clone();
}
/**
* Getter for bias.
* @return
* Bias term that gets added to the output of the dot product.
*/
public double getBias()
{
return this.bias;
}
/**
* Setter for bias.
* @param bias
* Bias term that gets added to the output of the dot product.
*/
public void setBias(
double bias)
{
this.bias = bias;
}
@Override
public Double evaluate(
Vectorizable input)
{
final double dot = super.evaluate( input );
return dot + this.bias;
}
@Override
public Vector convertToVector()
{
final int dim = this.getInputDimensionality() + 1;
Vector p = VectorFactory.getDefault().createVector(dim);
for( int i = 0; i < dim-1; i++ )
{
p.setElement(i, this.weightVector.getElement(i) );
}
p.setElement(dim-1, this.bias);
return p;
}
@Override
public void convertFromVector(
Vector parameters)
{
final int dim = this.getInputDimensionality() + 1;
parameters.assertDimensionalityEquals( dim );
this.setWeightVector( parameters.subVector(0, dim-2) );
this.setBias( parameters.getElement(dim-1) );
}
}