gov.sandia.cognition.learning.function.scalar.SigmoidFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: SigmoidFunction.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright May 18, 2006, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*/
package gov.sandia.cognition.learning.function.scalar;
import gov.sandia.cognition.math.AbstractDifferentiableUnivariateScalarFunction;
import gov.sandia.cognition.annotation.CodeReview;
import gov.sandia.cognition.annotation.CodeReviews;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
/**
* An implementation of a sigmoid squashing function.
*
* @author Kevin R. Dixon
* @since 1.0
*/
@CodeReviews(
reviews={
@CodeReview(
reviewer="Kevin R. Dixon",
date="2009-07-06",
changesNeeded=false,
comments={
"Made clone() call super.clone().",
"Otherwise, class looks fine."
}
)
,
@CodeReview(
reviewer="Justin Basilico",
date="2006-10-05",
changesNeeded=false,
comments="Class looks fine."
)
}
)
@PublicationReference(
author="Wikipedia",
title="Sigmoid function",
type=PublicationType.WebPage,
year=2008,
url="http://en.wikipedia.org/wiki/Sigmoid_function"
)
public class SigmoidFunction
extends AbstractDifferentiableUnivariateScalarFunction
{
/**
* Creates a new instance of SigmoidFunction
*/
public SigmoidFunction()
{
super();
}
@Override
public SigmoidFunction clone()
{
return (SigmoidFunction) super.clone();
}
/**
* Evaluates the squashing function on the given input value.
*
* @param input The input value to squash.
* @return The output of the sigmoid.
*/
public double evaluate(
double input )
{
return 1.0 / (1.0 + Math.exp( -input ));
}
public double differentiate(
double input )
{
double y = this.evaluate( input );
return y * (1.0 - y);
}
}