gov.sandia.cognition.learning.performance.MeanZeroOneErrorEvaluator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: MeanZeroOneErrorEvaluator.java
* Authors: Justin Basilico
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright September 26, 2007, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*
*/
package gov.sandia.cognition.learning.performance;
import gov.sandia.cognition.learning.data.TargetEstimatePair;
import gov.sandia.cognition.learning.function.cost.AbstractSupervisedCostFunction;
import java.util.Collection;
/**
* The {@code MeanZeroOneErrorEvaluator} class implements a method for
* computing the performance of a supervised learner by the mean number of
* incorrect values between the target and estimated outputs. This can also be
* referred to as the error rate. The term "mean zero-one error" comes from the
* computation that the error is zero if the two values are equal and one if
* the two values are not equal.
*
* This class can be used with any data type that has a valid equals method.
*
* @param The type of the input to the evaluator to compute the
* performance of.
* @param The type of the target and estimate values.
* @author Justin Basilico
* @since 2.0
*/
public class MeanZeroOneErrorEvaluator
extends AbstractSupervisedCostFunction
{
/**
* Creates a new instance of MeanZeroOneErrorEvaluator.
*/
public MeanZeroOneErrorEvaluator()
{
super();
}
/**
* {@inheritDoc}
*
* @param data {@inheritDoc}
* @return {@inheritDoc}
*/
public Double evaluatePerformance(
final Collection extends TargetEstimatePair extends DataType, ? extends DataType>> data )
{
return MeanZeroOneErrorEvaluator.compute( data );
}
/**
* Computes the mean zero-one loss for the given pairs of values. The error
* is defined to be 0.0 if the two values are the same and 1.0 otherwise.
* The mean of this error computed over all the data points is returned.
*
* @param The type of data to compute the estimate over.
* @param data The data to compute the error for.
* @return The mean zero-one error.
*/
public static double compute(
final Collection extends TargetEstimatePair extends DataType, ? extends DataType>> data )
{
// Since we compute the mean we need to know how many items there are.
final int count = data.size();
if (count <= 0)
{
// There must be at least one item to compute a mean.
return 0.0;
}
// Compute the error for each pair and add it to the sum.
int errorSum = 0;
for (TargetEstimatePair extends DataType, ? extends DataType> pair
: data)
{
final DataType target = pair.getTarget();
final DataType estimate = pair.getEstimate();
if ((target == null ^ estimate == null) || (target != null && !target.equals( estimate )))
{
// The two values are not equal so this is an error.
errorSum += 1;
}
// else - This is not an error.
}
// Compute the mean of the error sum.
return (double) errorSum / (double) count;
}
}