gov.sandia.cognition.learning.algorithm.perceptron.kernel.Stoptron Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: Stoptron.java
* Authors: Justin Basilico
* Company: Sandia National Laboratories
* Project: Cognitive Foundry Learning Core
*
* Copyright February 04, 2011, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government. Export
* of this program may require a license from the United States Government.
*
*/
package gov.sandia.cognition.learning.algorithm.perceptron.kernel;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.learning.function.categorization.DefaultKernelBinaryCategorizer;
import gov.sandia.cognition.learning.function.kernel.Kernel;
/**
* An online, budgeted, kernel version of the Perceptron algorithm that stops
* learning once it has reached its budget.
*
* @param
* The input type to learn over, which is passed to the kernel function.
* @author Justin Basilico
* @since 3.3.0
*/
@PublicationReference(
author={"Francesco Orabona", "Joseph Keshet", "Barbara Caputo"},
title="Bounded Kernel-Based Online Learning",
year=2009,
type=PublicationType.Journal,
publication="Journal of Machine Learning Research",
pages={2643, 2666},
url="http://portal.acm.org/citation.cfm?id=1755875")
public class Stoptron
extends AbstractOnlineBudgetedKernelBinaryCategorizerLearner
{
/**
* Creates a new {@code Stoptron} with default parameters and a null kernel.
*/
public Stoptron()
{
this(null, DEFAULT_BUDGET);
}
/**
* Creates a new {@code Stoptron} with the given parameters.
*
* @param kernel
* The kernel function to use.
* @param budget
* The budget for learning. Must be positive.
*/
public Stoptron(
final Kernel super InputType> kernel,
final int budget)
{
super(kernel, budget);
}
@Override
public void update(
final DefaultKernelBinaryCategorizer target,
final InputType input,
final boolean label)
{
if (target.getExamples().size() < this.getBudget())
{
// We haven't exceeded the budget, so make an update.
OnlineKernelPerceptron.update(target, input, label, true);
}
// else - We've exceeded the budget, don't update.
}
}