All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gov.sandia.cognition.learning.data.feature.StandardDistributionNormalizer Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/*
 * File:                StandardDistributionNormalizer.java
 * Authors:             Justin Basilico
 * Company:             Sandia National Laboratories
 * Project:             Cognitive Foundry
 *
 * Copyright September 11, 2007, Sandia Corporation.  Under the terms of Contract
 * DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
 * or on behalf of the U.S. Government. Export of this program may require a
 * license from the United States Government. See CopyrightHistory.txt for
 * complete details.
 *
 */

package gov.sandia.cognition.learning.data.feature;

import gov.sandia.cognition.annotation.CodeReview;
import gov.sandia.cognition.collection.NumberComparator;
import gov.sandia.cognition.learning.algorithm.BatchLearner;
import gov.sandia.cognition.statistics.distribution.UnivariateGaussian;
import gov.sandia.cognition.math.AbstractUnivariateScalarFunction;
import gov.sandia.cognition.math.UnivariateStatisticsUtil;
import gov.sandia.cognition.util.AbstractCloneableSerializable;
import gov.sandia.cognition.util.Pair;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;

/**
 * The {@code StandardDistributionNormalizer} class implements a normalization
 * method where a real value is converted onto a standard distribution. This
 * means that the value is subtracted by the mean and divided by the standard
 * deviation.
 * 

* f(x) = (x - mean) / (standardDeviation) * * @author Justin Basilico * @since 2.0 */ @CodeReview( reviewer="Kevin R. Dixon", date="2009-07-06", changesNeeded=false, comments={ "Made the learning methods take ", "Now extends AbstractUnivariateScalarFunction", "Cleaned up javadoc" } ) public class StandardDistributionNormalizer extends AbstractUnivariateScalarFunction { /** The default mean is {@value}. */ public static final double DEFAULT_MEAN = 0.0; /** The default variance is {@value}. This means that by default there is no * normalization by variance. */ public static final double DEFAULT_VARIANCE = 1.0; /** The mean of normalization. */ protected double mean; /** The variance for normalization. */ protected double variance; /** The cached value of the standard deviation for normalization. */ protected double standardDeviation; /** * Creates a new instance of StandardNormalization with a mean of 0.0 and * a variance of 1.0. */ public StandardDistributionNormalizer() { this(DEFAULT_MEAN, DEFAULT_VARIANCE); } /** * Creates a new instance of StandardDistributionNormalizer with the given * mean and variance. * * @param mean The mean. * @param variance The variance. */ public StandardDistributionNormalizer( final double mean, final double variance) { super(); this.setMean(mean); this.setVariance(variance); } /** * Creates a new instance of StandardDistributionNormalizer from the given * Gaussian. * * @param gaussian The Gaussian to initialize the normalizer with. */ public StandardDistributionNormalizer( final UnivariateGaussian gaussian) { this(gaussian.getMean(), gaussian.getVariance()); } /** * Creates a new copy of a StandardDistributionNormalizer. * * @param other The StandardDistributionNormalizer to copy. */ public StandardDistributionNormalizer( final StandardDistributionNormalizer other) { this(other.getMean(), other.getVariance()); } /** * Creates a new copy of this StandardDistributionNormalizer. * * @return A new copy of this StandardDistributionNormalizer. */ @Override public StandardDistributionNormalizer clone() { return (StandardDistributionNormalizer) super.clone(); } /** * Normalizes the given double value by subtracting the mean and dividing * by the standard deviation (the square root of the variance). * * @param value The value to normalize. * @return The normalized value. */ public double evaluate( final double value) { return (value - this.mean) / this.standardDeviation; } /** * Gets the mean. * * @return The mean. */ public double getMean() { return this.mean; } /** * Sets the mean. * * @param mean The mean. */ public void setMean( final double mean) { this.mean = mean; } /** * Gets the variance. * * @return The variance. */ public double getVariance() { return variance; } /** * Sets the variance. It must be greater than 0.0. * * @param variance The variance. */ public void setVariance( double variance) { if (variance <= 0.0) { throw new IllegalArgumentException("variance must be positive"); } this.variance = variance; this.standardDeviation = Math.sqrt(variance); } /** * Builds a StandardDistributionNormalizer by computing the mean and * variance of the given collection of values. * * @param values The values to use to build the normalizer. * @return The StandardDistributionNormalizer created from the mean and * variance of the given values. */ public static StandardDistributionNormalizer learn( final Collection values) { return learn(values, 0.0); } /** * Builds a StandardDistributionNormalizer by computing the mean and * variance of the given collection of values. It will exclude the given * percentage of outliers from the value. * * @param values The values to use to build the normalizer. * @param outlierPercent The percentage of outliers to exclude. * @return The StandardDistributionNormalizer created from the mean and * variance of the given values. */ public static StandardDistributionNormalizer learn( final Collection values, double outlierPercent) { if (values == null) { // Error: Bad values. throw new NullPointerException("values cannot be null."); } else if (outlierPercent < 0.0 || outlierPercent >= 1.0) { // Error: Bad outlier percent. throw new IllegalArgumentException( "outlierPercent must be [0.0, 1.0)"); } int count = values.size(); if (count <= 0) { // Error: Not enough samples. throw new IllegalArgumentException("values cannot be empty."); } // Figure out the collection to compute the mean and variance on. Collection included = values; if (outlierPercent > 0.0) { // Discard the given percentage of outliers by removing half that // percentage from each side. final ArrayList sorted = new ArrayList(values); Collections.sort(sorted, NumberComparator.INSTANCE ); int numToDiscard = (int) (count * outlierPercent / 2.0); if (numToDiscard > 0 && (2 * numToDiscard) < count) { included = sorted.subList(numToDiscard, count - numToDiscard); } } // Get the new count of values to compute. count = included.size(); // Compute the mean. Pair result = UnivariateStatisticsUtil.computeMeanAndVariance(included); double mean = result.getFirst(); double variance = ((count-1.0)/(count))*result.getSecond(); if( variance <= 0.0 ) { variance = 1.0; } return new StandardDistributionNormalizer(mean, variance); } /** * The {@code Learner} class implements a {@code BatchLearner} object for * a {@code StandardDistributionNormalizer}. */ public static class Learner extends AbstractCloneableSerializable implements BatchLearner, StandardDistributionNormalizer> { /** The default percentage of outliers is {@value}. */ public static final double DEFAULT_OUTLIER_PERCENT = 0.0; /** The percentage of outliers to exclude from learning. */ protected double outlierPercent; /** * Creates a new StandardDistributionNormalizer.Learner. */ public Learner() { this(DEFAULT_OUTLIER_PERCENT); } /** * Creates a new StandardDistributionNormalizer.Learner. * * @param outlierPercent The percentage of outliers to exclude. */ public Learner( final double outlierPercent) { super(); this.setOutlierPercent(outlierPercent); } /** * Learns a StandardDistributionNormalizer from the given values by * computing the mean and standard deviation of the values. * * @param values The values to use. * @return The StandardDistributionNormalizer computed from the given * values. */ public StandardDistributionNormalizer learn( final Collection values) { return StandardDistributionNormalizer.learn( values, this.outlierPercent); } /** * Sets the percentage of outliers to exclude from learning. * * @return The percentage of outliers. */ public double getOutlierPercent() { return outlierPercent; } /** * Sets the percentage of outliers to exclude from learning. Must be * between 0.0 and 1.0. * * @param outlierPercent The percentage of outliers. */ public void setOutlierPercent( final double outlierPercent) { if (outlierPercent < 0.0 || outlierPercent >= 1.0) { throw new IllegalArgumentException( "outlierPercent must be [0.0, 1.0)"); } this.outlierPercent = outlierPercent; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy