gov.sandia.cognition.statistics.distribution.PoissonDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: PoissonDistribution.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Dec 14, 2009, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.statistics.distribution;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.collection.IntegerSpan;
import gov.sandia.cognition.math.MathUtil;
import gov.sandia.cognition.math.UnivariateStatisticsUtil;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.statistics.AbstractClosedFormIntegerDistribution;
import gov.sandia.cognition.statistics.ClosedFormCumulativeDistributionFunction;
import gov.sandia.cognition.statistics.ClosedFormDiscreteUnivariateDistribution;
import gov.sandia.cognition.statistics.DistributionEstimator;
import gov.sandia.cognition.statistics.DistributionWeightedEstimator;
import gov.sandia.cognition.statistics.EstimableDistribution;
import gov.sandia.cognition.statistics.ProbabilityMassFunction;
import gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil;
import gov.sandia.cognition.util.AbstractCloneableSerializable;
import gov.sandia.cognition.util.WeightedValue;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Random;
/**
* A Poisson distribution is the limits of what happens when a Bernoulli trial
* with "rare" events are sampled on a continuous basis and then binned into
* discrete time intervals. For example, if two people buy a house every day,
* then what is the probability that ten people buy a house on some day?
* @author Kevin R. Dixon
* @since 3.0
*/
@PublicationReference(
author="Wikipedia",
title="Poisson distribution",
type=PublicationType.WebPage,
year=2009,
url="http://en.wikipedia.org/wiki/Poisson_distribution"
)
public class PoissonDistribution
extends AbstractClosedFormIntegerDistribution
implements ClosedFormDiscreteUnivariateDistribution,
EstimableDistribution
{
/**
* Default rate parameter, {@value}.
*/
public static final double DEFAULT_RATE = 1.0;
/**
* Expected number of occurrences during the integer interval, must be
* greater than zero.
*/
protected double rate;
/**
* Creates a new instance of PoissonDistribution
*/
public PoissonDistribution()
{
this( DEFAULT_RATE );
}
/**
* Creates a new instance of PoissonDistribution
* @param rate
* Expected number of occurrences during the integer interval, must be
* greater than zero.
*/
public PoissonDistribution(
final double rate )
{
this.setRate(rate);
}
/**
* Creates a new instance of PoissonDistribution
* @param other
* PoissonDistribution to copy.
*/
public PoissonDistribution(
final PoissonDistribution other )
{
this( other.getRate() );
}
@Override
public PoissonDistribution clone()
{
PoissonDistribution clone = (PoissonDistribution) super.clone();
return clone;
}
@Override
public Double getMean()
{
return this.getMeanAsDouble();
}
public double getMeanAsDouble()
{
return this.getRate();
}
@Override
public void sampleInto(
final Random random,
final int sampleCount,
final Collection super Number> output)
{
ProbabilityMassFunctionUtil.sampleInto(
this.getProbabilityFunction(), random, sampleCount, output);
}
@Override
public int sampleAsInt(
final Random random)
{
// TODO: See if there is a way to do this without any boxing.
return ProbabilityMassFunctionUtil.sampleSingle(
this.getProbabilityFunction(), random).intValue();
}
@Override
public void sampleInto(
final Random random,
final int[] output,
final int start,
final int length)
{
// TODO: See if there is a way to do this without any boxing.
final ArrayList samples = this.sample(random, length);
for (int i = 0; i < length; i++)
{
output[start + i] = samples.get(i).intValue();
}
}
@Override
public PoissonDistribution.CDF getCDF()
{
return new CDF( this );
}
@Override
public Vector convertToVector()
{
return VectorFactory.getDefault().copyValues( this.getRate() );
}
@Override
public void convertFromVector(
final Vector parameters)
{
parameters.assertDimensionalityEquals(1);
this.setRate( parameters.getElement(0) );
}
@Override
public double getVariance()
{
return this.getRate();
}
@Override
public IntegerSpan getDomain()
{
// The actual support is the entire set of nonnegative integers, but
// that would crush us... So let's just go out far enough where
// the PMF values are almost zero (and the CDF is almost 1.0).
return new IntegerSpan(0, (int) Math.round(this.getRate()*10)+5 );
}
@Override
public int getDomainSize()
{
return this.getDomain().size();
}
@Override
public PoissonDistribution.PMF getProbabilityFunction()
{
return new PoissonDistribution.PMF( this );
}
/**
* Getter for rate
* @return
* Expected number of occurrences during the integer interval, must be
* greater than zero.
*/
public double getRate()
{
return this.rate;
}
/**
* Setter for rate
* @param rate
* Expected number of occurrences during the integer interval, must be
* greater than zero.
*/
public void setRate(
final double rate)
{
if( rate <= 0.0 )
{
throw new IllegalArgumentException( "Rate must be >0.0" );
}
this.rate = rate;
}
@Override
public Integer getMinSupport()
{
return 0;
}
@Override
public Integer getMaxSupport()
{
return Integer.MAX_VALUE;
}
@Override
public PoissonDistribution.MaximumLikelihoodEstimator getEstimator()
{
return new PoissonDistribution.MaximumLikelihoodEstimator();
}
/**
* PMF of the PoissonDistribution.
*/
public static class PMF
extends PoissonDistribution
implements ProbabilityMassFunction
{
/**
* Default constructor.
*/
public PMF()
{
super();
}
/**
* Creates a new PMF
* @param rate
* Expected number of occurrences during the integer interval, must be
* greater than zero.
*/
public PMF(
final double rate )
{
super( rate );
}
/**
* Copy constructor
* @param other
* PoissonDistribution to copy
*/
public PMF(
final PoissonDistribution other )
{
super( other );
}
@Override
public double getEntropy()
{
return ProbabilityMassFunctionUtil.getEntropy(this);
}
@Override
public Double evaluate(
Number input)
{
int k = input.intValue();
if( k < 0 )
{
return 0.0;
}
else
{
return Math.exp( this.logEvaluate(input) );
}
}
@Override
public double logEvaluate(
Number input)
{
int k = input.intValue();
if( k < 0 )
{
return Math.log(0.0);
}
else if( k == 0 )
{
return -this.rate;
}
else
{
final double lambda = this.rate;
double logSum = k*Math.log(lambda) - lambda - MathUtil.logFactorial(k);
return logSum;
}
}
@Override
public PoissonDistribution.PMF getProbabilityFunction()
{
return this;
}
}
/**
* CDF of the PoissonDistribution
*/
public static class CDF
extends PoissonDistribution
implements ClosedFormCumulativeDistributionFunction
{
/**
* Default constructor.
*/
public CDF()
{
super();
}
/**
* Creates a new CDF
* @param rate
* Expected number of occurrences during the integer interval, must be
* greater than zero.
*/
public CDF(
final double rate )
{
super( rate );
}
/**
* Copy constructor
* @param other
* PoissonDistribution to copy
*/
public CDF(
final PoissonDistribution other )
{
super( other );
}
@Override
public Double evaluate(
final Number input)
{
int k = (int) Math.floor(input.doubleValue());
if( k < 0 )
{
return 0.0;
}
else if( k == 0 )
{
return Math.exp( -this.rate );
}
else
{
return 1.0 - MathUtil.lowerIncompleteGammaFunction( k+1, this.rate );
}
}
@Override
public PoissonDistribution.CDF getCDF()
{
return this;
}
}
/**
* Creates a PoissonDistribution from data
*/
public static class MaximumLikelihoodEstimator
extends AbstractCloneableSerializable
implements DistributionEstimator
{
/**
* Default constructor
*/
public MaximumLikelihoodEstimator()
{
}
@Override
public PoissonDistribution.PMF learn(
Collection extends Number> data )
{
final double mean = UnivariateStatisticsUtil.computeMean(data);
return new PoissonDistribution.PMF(mean);
}
}
/**
* Creates a PoissonDistribution from weighted data.
*
* @since 3.3.3
*/
public static class WeightedMaximumLikelihoodEstimator
extends AbstractCloneableSerializable
implements DistributionWeightedEstimator
{
/**
* Creates a new {@code WeightedMaximumLikelihoodEstimator}.
*/
public WeightedMaximumLikelihoodEstimator()
{
super();
}
/**
* Creates a new instance of PoissonDistribution using a weighted
* Maximum Likelihood estimate based on the given data.
*
* @param data
* Weighed pairs of data (first is data, second is weight) that was
* generated by some unknown PoissonDistribution distribution.
* @return
* Maximum Likelihood PoissonDistribution that generated the data.
*/
@Override
public PoissonDistribution.PMF learn(
final Collection extends WeightedValue extends Number>> data)
{
final double mean =
UnivariateStatisticsUtil.computeWeightedMean(data);
return new PoissonDistribution.PMF(mean);
}
}
}