gov.sandia.cognition.learning.algorithm.confidence.ConfidenceWeightedDiagonalDeviation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: ConfidenceWeightedDiagonalDeviation.java
* Authors: Justin Basilico
* Company: Sandia National Laboratories
* Project: Cognitive Foundry Learning Core
*
* Copyright April 12, 2011, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government. Export
* of this program may require a license from the United States Government.
*
*/
package gov.sandia.cognition.learning.algorithm.confidence;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.learning.algorithm.AbstractSupervisedBatchAndIncrementalLearner;
import gov.sandia.cognition.learning.function.categorization.DiagonalConfidenceWeightedBinaryCategorizer;
import gov.sandia.cognition.math.matrix.Matrix;
import gov.sandia.cognition.math.matrix.MatrixFactory;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.math.matrix.Vectorizable;
import gov.sandia.cognition.statistics.distribution.UnivariateGaussian;
import gov.sandia.cognition.util.ArgumentChecker;
/**
* An implementation of the Standard Deviation (Stdev) algorithm for learning
* a confidence-weighted categorizer. It updates only the diagonal of the
* covariance matrix, thus computing the variance for each dimension. This
* corresponds to the "Stdev-drop" version.
*
* @author Justin Basilico
* @since 3.3.0
*/
@PublicationReference(
author={"Koby Crammer", "Mark Dredze", "Fernando Pereira"},
title="Exact Convex Confidence-Weighted Learning",
year=2008,
type=PublicationType.Conference,
publication="Advances in Neural Information Processing Systems",
url="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.169.3364")
public class ConfidenceWeightedDiagonalDeviation
extends AbstractSupervisedBatchAndIncrementalLearner
{
/** The default confidence is {@value}. */
public static final double DEFAULT_CONFIDENCE = 0.85;
/** The default variance is {@value}. */
public static final double DEFAULT_DEFAULT_VARIANCE = 1.0;
/** The confidence to use for updating. Must be in [0.5, 1]. Called eta in
* the paper. */
protected double confidence;
/** The default variance, which the diagonal of the covariance matrix is
* initialized to. Must be positive. Called a in the paper. */
protected double defaultVariance;
/** Phi is the standard score computed from the confidence. */
protected double phi;
/** Psi is the cached value 1 + phi^2 / 2. */
protected double psi;
/** Epsilon is the cached value 1 + phi^2. */
protected double epsilon;
/**
* Creates a new {@code ConfidenceWeightedDiagonalVariance} with default
* parameters.
*/
public ConfidenceWeightedDiagonalDeviation()
{
this(DEFAULT_CONFIDENCE, DEFAULT_DEFAULT_VARIANCE);
}
/**
* Creates a new {@code ConfidenceWeightedDiagonalVariance} with the given
* parameters.
*
* @param confidence
* The confidence to use. Must be in [0, 1].
* @param defaultVariance
* The default value to initialize the covariance matrix to.
*/
public ConfidenceWeightedDiagonalDeviation(
final double confidence,
final double defaultVariance)
{
super();
this.setConfidence(confidence);
this.setDefaultVariance(defaultVariance);
}
@Override
public DiagonalConfidenceWeightedBinaryCategorizer createInitialLearnedObject()
{
return new DiagonalConfidenceWeightedBinaryCategorizer();
}
@Override
public void update(
final DiagonalConfidenceWeightedBinaryCategorizer target,
final Vectorizable input,
final Boolean output)
{
if (input != null && output != null)
{
this.update(target, input.convertToVector(), (boolean) output);
}
}
/**
* Updates the target using the given input and associated label.
*
* @param target
* The target to update.
* @param input
* The supervised input value.
* @param label
* The output label associated with the input.
*/
public void update(
final DiagonalConfidenceWeightedBinaryCategorizer target,
final Vector input,
final boolean label)
{
// Get the mean and variance of the thing we will learn, which are
// the parameters we will update.
final Vector mean;
final Vector variance;
if (!target.isInitialized())
{
// Initialize the mean to zero and the variance to the default value
// that we were given.
final int dimensionality = input.getDimensionality();
mean = VectorFactory.getDenseDefault().createVector(dimensionality);
variance = VectorFactory.getDenseDefault().createVector(
dimensionality, this.getDefaultVariance());
target.setMean(mean);
target.setVariance(variance);
}
else
{
mean = target.getMean();
variance = target.getVariance();
}
// Figure out the predicted and actual (yi) values.
final double predicted = input.dotProduct(mean);
final double actual = label ? +1.0 : -1.0;
// Now compute the margin (Mi).
final double margin = actual * predicted;
// Now compute the margin variance by multiplying the variance by
// the input. In the paper this is Sigma * x. We keep track of this
// vector since it will be useful when computing the update.
final Vector varianceTimesInput = input.dotTimes(variance);
// Now get the margin variance (Vi).
final double marginVariance = input.dotProduct(varianceTimesInput);
// TODO: Cache repeated multiplications.
// --jbasilico (2011-12-03)
final double m = margin;
final double v = marginVariance;
if (v == 0.0 || m > phi * Math.sqrt(v))
{
return;
}
double alpha = (-m * psi
+ Math.sqrt(m * m * Math.pow(phi, 4) / 4.0
+ v * phi * phi * epsilon))
/ (v * epsilon);
alpha = Math.max(alpha, 0.0);
if (alpha <= 0.0)
{
return;
}
double u = 0.25 *
Math.pow(-alpha * v * phi
+ Math.sqrt(alpha * alpha * v * v * phi * phi + 4.0 * v), 2);
double beta = alpha * phi / (Math.sqrt(u) + v * alpha * phi);
// Compute the new mean.
final Vector meanUpdate = varianceTimesInput.scale(actual * alpha);
mean.plusEquals(meanUpdate);
final Matrix varianceInverseUpdate =
MatrixFactory.getDiagonalDefault().createDiagonal(
input.dotTimes(input));
varianceInverseUpdate.scaleEquals(
beta);
//alpha * phi * Math.pow(u, -0.5));
final Matrix varianceInverse = target.getCovariance().inverse();
varianceInverse.plusEquals(varianceInverseUpdate);
final Matrix covariance = varianceInverse.inverse();
for (int i = 0; i < variance.getDimensionality(); i++)
{
variance.setElement(i, covariance.getElement(i, i));
}
// Set the mean and variance.
target.setMean(mean);
target.setVariance(variance);
}
/**
* Gets the confidence to use for updating. Must be in [0.5, 1]. Called eta
* in the paper.
*
* @return
* The confidence.
*/
public double getConfidence()
{
return this.confidence;
}
/**
* Gets the confidence to use for updating. Must be in [0.5, 1]. Called eta
* in the paper.
*
* @param confidence
* The confidence. Must be between 0.5 and 1, inclusive.
*/
public void setConfidence(
final double confidence)
{
ArgumentChecker.assertIsInRangeInclusive(
"confidence", confidence, 0.5, 1.0);
this.confidence = confidence;
// Compute phi.
this.phi = -UnivariateGaussian.CDF.Inverse.evaluate(
1.0 - confidence, 0.0, 1.0 );
this.psi = 1.0 + this.phi * this.phi / 2.0;
this.epsilon = 1.0 + this.phi * this.phi;
}
/**
* Gets the default variance, which the diagonal of the covariance matrix is
* initialized to. Must be positive. Called a in the paper.
*
* @return
* The default variance.
*/
public double getDefaultVariance()
{
return this.defaultVariance;
}
/**
* Sets the default variance, which the diagonal of the covariance matrix is
* initialized to. Must be positive. Called a in the paper.
*
* @param defaultVariance
* The default variance. Must be positive.
*/
public void setDefaultVariance(
final double defaultVariance)
{
ArgumentChecker.assertIsPositive("defaultVariance", defaultVariance);
this.defaultVariance = defaultVariance;
}
}