gov.sandia.cognition.learning.algorithm.gradient.GradientDescendable Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: GradientDescendable.java
* Authors: Justin Basilico and Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright February 21, 2006, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*/
package gov.sandia.cognition.learning.algorithm.gradient;
import gov.sandia.cognition.annotation.CodeReview;
import gov.sandia.cognition.annotation.CodeReviews;
import gov.sandia.cognition.math.matrix.Matrix;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorizableVectorFunction;
/**
* Defines the functionality of an object that is required in order to apply
* the gradient descent algorithm to it. That is, an object that can
* differentiate its output (a vector) for a given input (another vector) with
* respect to its parameters (a matrix).
*
* @author Justin Basilico
* @author Kevin R. Dixon
* @since 1.0
*/
@CodeReviews(
reviews={
@CodeReview(
reviewer="Kevin R. Dixon",
date="2008-07-23",
changesNeeded=false,
comments={
"Minor change to class javadoc.",
"Moved previous code review as CodeReview annotation",
"Looks fine."
}
)
,
@CodeReview(
reviewer="Justin Basilico",
date="2006-10-04",
changesNeeded=false,
comments="Interface looks fine."
)
}
)
public interface GradientDescendable
extends VectorizableVectorFunction,
ParameterGradientEvaluator
{
/**
* Computes the derivative of the function about the input with respect
* to the parameters of the function.
*
* @param input Point about which to differentiate w.r.t. the parameters.
* @return Matrix of parameter gradients.
*/
public Matrix computeParameterGradient(
final Vector input);
/**
* {@inheritDoc}
*
* @return {@inheritDoc}
*/
public GradientDescendable clone();
}