All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerBFGS Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/*
 * File:                FunctionMinimizerBFGS.java
 * Authors:             Kevin R. Dixon
 * Company:             Sandia National Laboratories
 * Project:             Cognitive Foundry
 *
 * Copyright November 7, 2007, Sandia Corporation.
 * Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
 * license for use of this work by or on behalf of the U.S. Government. 
 * Export of this program may require a license from the United States 
 * Government. See CopyrightHistory.txt for complete details.
 *
 */

package gov.sandia.cognition.learning.algorithm.minimization;

import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationReferences;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizer;
import gov.sandia.cognition.math.matrix.Matrix;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.util.ObjectUtil;

/**
 * Implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
 * nonlinear minimization algorithm.  This algorithm is generally considered
 * to be the most effective/efficient unconstrained nonlinear optimization 
 * algorithm out there.  It does, however, require the derivative of the
 * function to optimize.  Furthermore, it requires the storage of an
 * approximation of the Hessian inverse (BFGS does not invert any matrix,
 * it merely approximates the inverse explicitly... clever, eh?), which is an
 * N-by-N matrix, where N is the size of the input space.
 * 

* In practice, one can use approximated Jacobians with BFGS with good * convergence results, so one can use, for example, * {@code GradientDescendableApproximator} (when used for parameter cost * minimization) when exact gradients are not available. Using approximated * Jacobian tends, to slow down BFGS by a factor of about ~3, but it appears * to generally outperform derivative-free minimization techniques, like * Powell's direction-set method. Also, BFGS appears to outperform * Leveberg-Marquardt estimation for parameter estimation, in my experience. *

* Again, just to recap: BFGS appears to be the method of choice when * minimizing against a cost function (using exact or approximated Jacobians). *

* Note that there is a reduced-memory implementation of BFGS, called L-BFGS, * that reduces the memory needed to store the Hessian inverse. We have not * yet implemented this. * * @author Kevin R. Dixon * @since 2.0 * */ @PublicationReferences( references={ @PublicationReference( author="R. Fletcher", title="Practical Methods of Optimization, Second Edition", type=PublicationType.Book, year=1987, pages=55, notes="Section 3.2, Equation 3.2.12" ) , @PublicationReference( author="Wikipedia", title="BFGS method", type=PublicationType.WebPage, year=2008, url="http://en.wikipedia.org/wiki/BFGS_method" ) , @PublicationReference( author={ "William H. Press", "Saul A. Teukolsky", "William T. Vetterling", "Brian P. Flannery" }, title="Numerical Recipes in C, Second Edition", type=PublicationType.Book, year=1992, pages={428,429}, notes="Section 10.7", url="http://www.nrbook.com/a/bookcpdf.php" ) } ) public class FunctionMinimizerBFGS extends FunctionMinimizerQuasiNewton { /** * Creates a new instance of FunctionMinimizerBFGS */ public FunctionMinimizerBFGS() { this( ObjectUtil.cloneSafe( DEFAULT_LINE_MINIMIZER ) ); } /** * Creates a new instance of FunctionMinimizerBFGS * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction */ public FunctionMinimizerBFGS( LineMinimizer lineMinimizer ) { super( lineMinimizer, null, DEFAULT_TOLERANCE, DEFAULT_MAX_ITERATIONS ); } /** * Creates a new instance of FunctionMinimizerBFGS * * @param initialGuess Initial guess about the minimum of the method * @param tolerance Tolerance of the minimization algorithm, must be >= 0.0, typically ~1e-10 * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction * @param maxIterations Maximum number of iterations, must be >0, typically ~100 */ public FunctionMinimizerBFGS( LineMinimizer lineMinimizer, Vector initialGuess, double tolerance, int maxIterations ) { super( lineMinimizer, initialGuess, tolerance, maxIterations ); } public boolean updateHessianInverse( Matrix hessianInverse, Vector delta, Vector gamma ) { return FunctionMinimizerBFGS.BFGSupdateRule( hessianInverse, delta, gamma, this.getTolerance() ); } /** * BFGS Quasi-Newton update rule * @param hessianInverse * Current Hessian inverse estimate, will be modified * @param delta * Change in x-axis * @param gamma * Change in gradient * @param tolerance * Tolerance of the algorithm * @return * true if update, false otherwise */ @PublicationReference( author="R. Fletcher", title="Practical Methods of Optimization, Second Edition", type=PublicationType.Book, year=1987, pages=55, notes="Section 3.2, Equation 3.2.12" ) public static boolean BFGSupdateRule( Matrix hessianInverse, Vector delta, Vector gamma, double tolerance ) { int M = hessianInverse.getNumRows(); // This is formula 3.2.12 on p.55 in PMOO // Solving for Fletcher's "H" Vector Higamma = hessianInverse.times( gamma ); double deltaTgamma = delta.dotProduct( gamma ); // If we're close to singular, then skip the Hessian update. // Some people add some clever resetting code here. // I'll just skip for now. if( Math.sqrt( tolerance * delta.norm2Squared() * gamma.norm2Squared() ) >= Math.abs(deltaTgamma) ) { return false; } double term1 = 1.0 + (gamma.dotProduct( Higamma ) / deltaTgamma); for( int i = 0; i < M; i++ ) { double deltai = delta.getElement( i ); double Higammai = Higamma.getElement( i ); // Since the Hessian inverse is symmetric, we can just iterate // through the bottom half of the matrix and mirror the values. for( int j = 0; j <= i; j++ ) { double oldValue = hessianInverse.getElement( i, j ); double change = term1*deltai*delta.getElement( j ); change -= deltai*Higamma.getElement(j) + Higammai*delta.getElement(j); change /= deltaTgamma; double newValue = oldValue + change; // Since the Hessian inverse is symmetric, we can just iterate // through the bottom half of the matrix and mirror the values. // But make sure we don't double update the diagonal. hessianInverse.setElement( i, j, newValue ); if( i != j ) { hessianInverse.setElement( j, i, newValue ); } } } return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy