All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerDirectionSetPowell Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/*
 * File:                FunctionMinimizerDirectionSetPowell.java
 * Authors:             Kevin R. Dixon
 * Company:             Sandia National Laboratories
 * Project:             Cognitive Foundry
 *
 * Copyright November 5, 2007, Sandia Corporation.  Under the terms of Contract
 * DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
 * or on behalf of the U.S. Government. Export of this program may require a
 * license from the United States Government. See CopyrightHistory.txt for
 * complete details.
 *
 */

package gov.sandia.cognition.learning.algorithm.minimization;

import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationReferences;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToScalarFunction;
import gov.sandia.cognition.evaluator.Evaluator;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizer;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeFree;
import gov.sandia.cognition.learning.data.DefaultInputOutputPair;
import gov.sandia.cognition.learning.data.WeightedInputOutputPair;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.util.ObjectUtil;
import java.util.LinkedList;
import java.util.List;

/**
 * Implementation of the derivative-free unconstrained nonlinear direction-set
 * minimization algorithm called "Powell's Method" by Numerical Recipes.
 * The method was originally known as Smith's Direction-Set Method, to which
 * Powell made an ingenious improvement.  Powell's Method was later improved
 * upon by Brent.  This algorithm creates a basis set of search directions and
 * repeatedly searches along each direction until a local minimum is found
 * using only function evaluations, that is, no gradient information is needed.
 * This algorithm is amazingly good at finding a minimum, and is my method of
 * choice for derivative-free minimization.  However, be sure to check the
 * performance this algorithm's cousin, the Nelder-Mead downhill simplex
 * (FunctionMinimizerNelderMead) before deciding on a derivative-free
 * minimization algorithm.
 * 

* That being said, it is sometimes more effective to use approximated * gradients and algorithms like BFGS (FunctionMinimizerBFGS) than * derivative-free minimization algorithms. Thus, I would try them both. * * @author Kevin R. Dixon * @since 2.0 * */ @PublicationReferences( references={ @PublicationReference( author="R. Fletcher", title="Practical Methods of Optimization, Second Edition", type=PublicationType.Book, year=1987, pages={87,90}, notes="Section 4.2" ), @PublicationReference( author={ "William H. Press", "Saul A. Teukolsky", "William T. Vetterling", "Brian P. Flannery" }, title="Numerical Recipes in C, Second Edition", type=PublicationType.Book, year=1992, pages={417,418}, notes="Section 10.5", url="http://www.nrbook.com/a/bookcpdf.php" ) } ) public class FunctionMinimizerDirectionSetPowell extends AbstractAnytimeFunctionMinimizer> { /** * Default maximum number of iterations before stopping, {@value} */ public static final int DEFAULT_MAX_ITERATIONS = 1000; /** * Default tolerance, {@value} */ public static final double DEFAULT_TOLERANCE = 1e-5; /** * Test for convergence on change in x, {@value} */ private static final double TOLERANCE_DELTA_X = 1e-7; /** * Default line minimization algorithm, LineMinimizerDerivativeFree */ public static final LineMinimizer DEFAULT_LINE_MINIMIZER = new LineMinimizerDerivativeFree(); /** * Work-horse algorithm that minimizes the function along a direction */ private LineMinimizer lineMinimizer; /** * Default constructor */ public FunctionMinimizerDirectionSetPowell() { this( ObjectUtil.cloneSafe( DEFAULT_LINE_MINIMIZER ) ); } /** * Creates a new instance of FunctionMinimizerDirectionSetPowell * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction */ public FunctionMinimizerDirectionSetPowell( LineMinimizer lineMinimizer ) { this( lineMinimizer, null, DEFAULT_TOLERANCE, DEFAULT_MAX_ITERATIONS ); } /** * Creates a new instance of FunctionMinimizerDirectionSetPowell * * @param initialGuess Initial guess about the minimum of the method * @param tolerance Tolerance of the minimization algorithm, must be >= 0.0, typically ~1e-10 * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction * @param maxIterations Maximum number of iterations, must be >0, typically ~100 */ public FunctionMinimizerDirectionSetPowell( LineMinimizer lineMinimizer, Vector initialGuess, double tolerance, int maxIterations ) { super( initialGuess, tolerance, maxIterations ); this.setLineMinimizer( lineMinimizer ); } /** * Matrix where the columns indicate the directions of minimization */ private List directionSet; /** * Function that maps a Evaluator onto a * Evaluator using a set point, direction and scale factor */ private DirectionalVectorToScalarFunction lineFunction; @Override protected boolean initializeAlgorithm() { int numDimensions = this.initialGuess.getDimensionality(); this.directionSet = new LinkedList(); for (int j = 0; j < numDimensions; j++) { Vector dj = VectorFactory.getDefault().createVector( numDimensions ); dj.setElement( j, 1.0 ); this.directionSet.add( dj ); } double fx = this.data.evaluate( this.initialGuess ); this.result = new DefaultInputOutputPair( this.initialGuess, fx ); this.lineFunction = new DirectionalVectorToScalarFunction( this.data, null, null ); return true; } @Override protected boolean step() { int bestIndex = -1; double bestDecrease = Double.POSITIVE_INFINITY; Vector xoriginal = this.result.getInput(); double foriginal = this.result.getOutput(); WeightedInputOutputPair lineResult; double scale; // In each iteration, loop over all direction in the set and // find the minimum along each direction // The "this.getKeepGoing()" part is if somebody calls "stop()" from // another thread while we're looping int index = 0; for( Vector direction : this.directionSet ) { if( !this.getKeepGoing() ) { return false; } Vector xold = this.result.getInput(); double fold = this.result.getOutput(); this.lineFunction.setVectorOffset( xold ); this.lineFunction.setDirection( direction ); lineResult = this.lineMinimizer.minimizeAlongDirection( this.lineFunction, fold, null); scale = lineResult.getWeight(); this.result = lineResult; // Each "deltaj" should be <= 0.0 since the line search should // give us an fnew that is less than fold double fnew = this.result.getOutput(); double deltaj = fnew - fold; if( bestDecrease > deltaj ) { bestDecrease = deltaj; bestIndex = index; } // Let's scale the direction by the line-search distance if( scale != 0.0 ) { direction.scaleEquals( scale ); } index++; } Vector xnew = this.result.getInput(); double fnew = this.result.getOutput(); // This is the termination criterion if ((2.0 * Math.abs( foriginal - fnew )) <= (this.tolerance * (Math.abs( foriginal ) + Math.abs( fnew )))) { return false; } // Here's the new conjugate direction Vector direction = xnew.minus( xoriginal ); // Fletcher says that we should perform a line search along the new // direction. I find that this helps when appended the new direction // to the end. If we're simply replacing the best direction with // the new direction, then this line search ends up costing us more // function evaluations. this.lineFunction.setVectorOffset( xnew ); this.lineFunction.setDirection( direction ); lineResult = this.lineMinimizer.minimizeAlongDirection( this.lineFunction, fnew, null); this.result = lineResult; scale = lineResult.getWeight(); // See if we've converged on zero slope double maximumDelta = 0.0; Vector delta = this.result.getInput().minus( xoriginal ); for( int i = 0; i < delta.getDimensionality(); i++ ) { // Normalizing coefficient: max(|xi|, 1.0), so that we're always // reducing the values double normalizedX = Math.max( Math.abs(this.result.getInput().getElement(i)), 1.0 ); double deltaX = Math.abs(delta.getElement(i)) / normalizedX; if( maximumDelta < deltaX ) { maximumDelta = deltaX; } } if( maximumDelta < TOLERANCE_DELTA_X ) { return false; } // Now we're going to replace the best direction with the conjugate // direction to ensure that we don't have increasing linear dependence if( scale != 0.0 ) { direction.scaleEquals( scale ); this.directionSet.remove( bestIndex ); this.directionSet.add( direction ); } return true; } @Override protected void cleanupAlgorithm() { } /** * Getter for lineMinimizer * @return * Work-horse algorithm that minimizes the function along a direction */ public LineMinimizer getLineMinimizer() { return this.lineMinimizer; } /** * Setter for lineMinimizer * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction */ public void setLineMinimizer( LineMinimizer lineMinimizer ) { this.lineMinimizer = lineMinimizer; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy