All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gov.sandia.cognition.learning.algorithm.minimization.FunctionMinimizerQuasiNewton Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/*
 * File:                FunctionMinimizerQuasiNewton.java
 * Authors:             Kevin R. Dixon
 * Company:             Sandia National Laboratories
 * Project:             Cognitive Foundry
 * 
 * Copyright Jun 20, 2008, Sandia Corporation.
 * Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
 * license for use of this work by or on behalf of the U.S. Government. 
 * Export of this program may require a license from the United States
 * Government. See CopyrightHistory.txt for complete details.
 * 
 */

package gov.sandia.cognition.learning.algorithm.minimization;

import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationReferences;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.learning.algorithm.minimization.line.DirectionalVectorToDifferentiableScalarFunction;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizer;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineMinimizerDerivativeBased;
import gov.sandia.cognition.learning.data.DefaultInputOutputPair;
import gov.sandia.cognition.math.DifferentiableEvaluator;
import gov.sandia.cognition.math.matrix.Matrix;
import gov.sandia.cognition.math.matrix.MatrixFactory;
import gov.sandia.cognition.math.matrix.Vector;

/**
 * This is an abstract implementation of the Quasi-Newton minimization method,
 * sometimes called "Variable-Metric methods."
 * This family of minimization algorithms uses first-order gradient information
 * to find a locally minimum to a scalar function.  Quasi-Newton methods
 * perform this minimization by creating an estimate of the inverse
 * of the Hessian to compute a new search direction.  A line search yields
 * the next point from which to estimate the function curvature (that is,
 * the estimate of the Hessian inverse).  Please note: Quasi-Newton algorithms
 * estimate the INVERSE of the Hessian and never actually invert/solve for
 * a matrix, making them extremely fast.
 * 

* It is generally agreed that Quasi-Newton methods are the fastest * minimization algorithms that use one first-order gradient information. In * particular, the BFGS update formula to the Quasi-Newton algorithm * (FunctionMinimizerBFGS) is generally regarded as the fastest unconstrained * optimizer out there, and is my method of choice. However, all Quasi-Newton * methods require storage of the inverse Hessian, which can become quite * large. If you cannot store the inverse Hessian estimate in memory, then * I would recommend using the Liu-Storey Conjugate Gradient algorithm instead * (FunctionMinimizerLiuStorey). *

* Generally speaking, Quasi-Newton methods require first-order gradient * information. If you do not have access to gradients, then I would recommend * using automatic finite-difference approximations over the derivative-free * minimization algorithms. * * @author Kevin R. Dixon * @since 2.1 */ @PublicationReferences( references={ @PublicationReference( author="R. Fletcher", title="Practical Methods of Optimization, Second Edition", type=PublicationType.Book, year=1987, pages={49, 57}, notes="Section 3.2" ), @PublicationReference( author="Wikipedia", title="Quasi-Newton method", type=PublicationType.WebPage, year=2008, url="http://en.wikipedia.org/wiki/Quasi-Newton_methods" ), @PublicationReference( author={ "William H. Press", "Saul A. Teukolsky", "William T. Vetterling", "Brian P. Flannery" }, title="Numerical Recipes in C, Second Edition", type=PublicationType.Book, year=1992, pages={425,430}, notes="Section 10.7", url="http://www.nrbook.com/a/bookcpdf.php" ) } ) public abstract class FunctionMinimizerQuasiNewton extends AbstractAnytimeFunctionMinimizer> { /** * Default maximum number of iterations before stopping, {@value} */ public static final int DEFAULT_MAX_ITERATIONS = 1000; /** * Default tolerance, {@value} */ public static final double DEFAULT_TOLERANCE = 1e-5; /** * Default line minimization algorithm, LineMinimizerDerivativeBased */ public static final LineMinimizer DEFAULT_LINE_MINIMIZER = // new LineMinimizerBacktracking(); new LineMinimizerDerivativeBased(); // new LineMinimizerDerivativeFree(); /** * Work-horse algorithm that minimizes the function along a direction */ private LineMinimizer lineMinimizer; /** * Creates a new instance of FunctionMinimizerBFGS * * @param initialGuess Initial guess about the minimum of the method * @param tolerance Tolerance of the minimization algorithm, must be >= 0.0, typically ~1e-10 * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction * @param maxIterations Maximum number of iterations, must be >0, typically ~100 */ public FunctionMinimizerQuasiNewton( LineMinimizer lineMinimizer, Vector initialGuess, double tolerance, int maxIterations ) { super( initialGuess, tolerance, maxIterations ); this.setLineMinimizer( lineMinimizer ); } /** * Function that maps a Evaluator onto a * Evaluator using a set point, direction and scale factor */ private DirectionalVectorToDifferentiableScalarFunction lineFunction; /** * Estimated inverse of the Hessian (second derivative) */ private Matrix hessianInverse; /** * Gradient at the current guess */ private Vector gradient; /** * The dimensionality of the input space */ private int dimensionality; @Override protected boolean initializeAlgorithm() { // Due to bizarre inheretance, this.data is the function to minimize... DifferentiableEvaluator f = this.data; this.result = new DefaultInputOutputPair( this.initialGuess.clone(), f.evaluate( this.initialGuess ) ); this.gradient = f.differentiate( this.initialGuess ); // Load up the line function with the current direction and // the search direction, which is the negative gradient, in other words // the direction of steepest descent this.lineFunction = new DirectionalVectorToDifferentiableScalarFunction( f, this.result.getInput(), this.gradient.scale( -1.0 ) ); this.dimensionality = this.initialGuess.getDimensionality(); this.hessianInverse = MatrixFactory.getDefault().createIdentity( this.dimensionality, this.dimensionality ) .scale( 0.5 ) // .scale( Math.sqrt(this.getTolerance()) ) ; return true; } @Override protected boolean step() { // Search along the gradient for the minimum value Vector xold = this.result.getInput(); this.result = this.lineMinimizer.minimizeAlongDirection( this.lineFunction, this.result.getOutput(), this.gradient ); Vector xnew = this.result.getInput(); double fnew = this.result.getOutput(); this.lineFunction.setVectorOffset( xnew ); // Let's cache some values for speed Vector gradientOld = this.gradient; // See if I've already computed the gradient information // NOTE: It's possible that there's still an inefficiency here. // For example, we could have computed the gradient for "xnew" // previous to the last evaluation. But this would require a // tremendous amount of bookkeeping and memory. if( (this.lineFunction.getLastGradient() != null) && (this.lineFunction.getLastGradient().getInput().equals( xnew )) ) { this.gradient = this.lineFunction.getLastGradient().getOutput(); } else { this.gradient = this.data.differentiate( xnew ); } // Start caching vectors and dot products for the BFGS update... // this notation is taken from Wikipedia Vector gamma = this.gradient.minus( gradientOld ); Vector delta = xnew.minus( xold ); // If we've converged on zero slope, then we're done! if( MinimizationStoppingCriterion.convergence( xnew, fnew, this.gradient, delta, this.getTolerance() ) ) { return false; } // Call the particular Quasi-Newton update rule this.updateHessianInverse( this.hessianInverse, delta, gamma ); this.lineFunction.setDirection( this.hessianInverse.times( this.gradient ).scale( -1.0 ) ); return true; } /** * The step that makes BFGS/DFP/SR1 different from each other. This * embodies the specific Quasi-Newton update step * @param hessianInverse * Current estimate of the Hessian inverse. Must be modified! * @param delta * Change in the search points (xnew-xold) * @param gamma * Change in the gradients (gnew-gold) * @return * True if Hessian was modified, false otherwise (due to numerical * instability, etc.) */ protected abstract boolean updateHessianInverse( Matrix hessianInverse, Vector delta, Vector gamma ); @Override protected void cleanupAlgorithm() { } /** * Getter for lineMinimizer * @return * Work-horse algorithm that minimizes the function along a direction */ public LineMinimizer getLineMinimizer() { return this.lineMinimizer; } /** * Setter for lineMinimizer * @param lineMinimizer * Work-horse algorithm that minimizes the function along a direction */ public void setLineMinimizer( LineMinimizer lineMinimizer ) { this.lineMinimizer = lineMinimizer; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy