gov.sandia.cognition.learning.algorithm.root.RootFinderSecantMethod Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: RootFinderSecantMethod.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Feb 6, 2009, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.learning.algorithm.root;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.evaluator.Evaluator;
import gov.sandia.cognition.learning.algorithm.minimization.line.InputOutputSlopeTriplet;
import gov.sandia.cognition.learning.algorithm.minimization.line.LineBracket;
import gov.sandia.cognition.learning.data.InputOutputPair;
/**
* The secant algorithm for root finding. This is a fast method but it is
* known to fail even in real-world cases, when a function's slope tends to
* zero the secant method will take near-infinite leaps. This version of the
* algorithm limits the maximum step size to ameliorate this problem. The
* algorithm works like a derivative-free approximation to the Newton-Raphson
* root-finding method. This is one of the fastest root-finding methods, but
* may fail to find a root on real-world cases. I would suggest using
* Ridders's method.
* @author Kevin R. Dixon
* @since 3.0
*/
@PublicationReference(
author="Wikipedia",
title="Secant method",
type=PublicationType.WebPage,
year=2009,
url="http://en.wikipedia.org/wiki/Secant_method"
)
public class RootFinderSecantMethod
extends AbstractBracketedRootFinder
{
/**
* Creates a new instance of RootFinderSecantMethod
*/
public RootFinderSecantMethod()
{
super();
}
private InputOutputSlopeTriplet previousPoint;
@Override
protected boolean initializeAlgorithm()
{
// Estimate the slope at the initial guess.
double input = this.getInitialGuess();
Evaluator f = this.data;
double forig = f.evaluate( input );
final double delta = 1.0;
double fdelta = f.evaluate( input + delta );
double slope = (fdelta-forig) / delta;
this.previousPoint = new InputOutputSlopeTriplet( input, forig, slope );
this.setRootBracket( new LineBracket( null, null, this.previousPoint ) );
// If slope is flat, then secant method is hosed.
return (slope != 0.0);
}
/**
* Maximum step size allowed, {@value}
*/
public static final double MAX_STEP = 1.0;
@Override
protected boolean step()
{
double xnm1 = this.previousPoint.getInput();
double fnm1 = this.previousPoint.getOutput();
double dnm1 = this.previousPoint.getSlope();
double delta = fnm1 / dnm1;
if( Math.abs(delta) > MAX_STEP )
{
delta = MAX_STEP * Math.signum( delta );
}
double xn = xnm1 - delta;
double fn = this.data.evaluate( xn );
double dn = (fn - fnm1) / (xn - xnm1);
if( dn == 0.0 )
{
return false;
}
this.previousPoint = new InputOutputSlopeTriplet( xn, fn, dn );
return (fn == 0.0) || (Math.abs(delta) >= this.getTolerance());
}
@Override
public InputOutputPair getResult()
{
return this.previousPoint;
}
}