![JAR search and dependency download from the Maven repository](/logo.png)
gov.sandia.cognition.learning.function.kernel.LinearKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: LinearKernel.java
* Authors: Justin Basilico
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright July 19, 2007, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*/
package gov.sandia.cognition.learning.function.kernel;
import gov.sandia.cognition.annotation.CodeReview;
import gov.sandia.cognition.math.matrix.Vectorizable;
import gov.sandia.cognition.util.AbstractCloneableSerializable;
/**
* The LinearKernel
class implements the most basic kernel: it just
* does the actual inner product between two vectors.
*
* @author Justin Basilico
* @since 2.0
*/
@CodeReview(
reviewer="Kevin R. Dixon",
date="2009-07-08",
changesNeeded=false,
comments={
"Made clone call super.clone.",
"Looks fine otherwise."
}
)
public class LinearKernel
extends AbstractCloneableSerializable
implements Kernel
{
/** A static instance of this class because it has no internal fields. */
private static final LinearKernel INSTANCE = new LinearKernel();
/**
* Gets the single instance of this class because it has no internal data.
*
* @return The instance of the singleton.
*/
public static LinearKernel getInstance()
{
return INSTANCE;
}
/**
* Creates a new instance of LinearKernel.
*/
public LinearKernel()
{
super();
}
@Override
public LinearKernel clone()
{
return (LinearKernel) super.clone();
}
/**
* Evaluates the linear kernel by taking the inner product of the two
* vectors.
*
* @param x The first vector.
* @param y The second vector.
* @return The dot product of the two vectors.
*/
public double evaluate(
final Vectorizable x,
final Vectorizable y)
{
return x.convertToVector().dotProduct(y.convertToVector());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy