gov.sandia.cognition.learning.function.scalar.LinearCombinationScalarFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: LinearCombinationScalarFunction.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright September 10, 2007, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*/
package gov.sandia.cognition.learning.function.scalar;
import gov.sandia.cognition.learning.function.regression.Regressor;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.evaluator.Evaluator;
import gov.sandia.cognition.learning.function.LinearCombinationFunction;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
/**
* A weighted linear combination of scalar functions.
*
* @param Input class for the basis function
* @author Kevin R. Dixon
* @since 2.0
*
*/
public class LinearCombinationScalarFunction
extends LinearCombinationFunction
implements Regressor
{
/**
* Creates a new instance of LinearCombinationFunction
* @param basisFunctions
* Collection of basis functions to combine to produce the output
*/
public LinearCombinationScalarFunction(
Collection extends Evaluator> basisFunctions )
{
this( new ArrayList>( basisFunctions ),
VectorFactory.getDefault().createVector( basisFunctions.size(), 1.0 ) );
}
/**
* Creates a new instance of LinearCombinationFunction
* @param basisFunctions
* Collection of basis functions to combine to produce the output
* @param coefficients
* Coefficients for the basisFunctions
*/
public LinearCombinationScalarFunction(
ArrayList extends Evaluator> basisFunctions,
Vector coefficients )
{
super( basisFunctions, coefficients );
}
@Override
public LinearCombinationScalarFunction clone()
{
return (LinearCombinationScalarFunction) super.clone();
}
public Double evaluate(
InputType input )
{
return this.evaluateAsDouble(input);
}
public double evaluateAsDouble(
final InputType input)
{
double output = 0.0;
for (int i = 0; i < this.getCoefficients().getDimensionality(); i++)
{
double weight = this.getCoefficients().getElement( i );
if (weight != 0.0)
{
output += weight * this.getBasisFunctions().get( i ).evaluate( input );
}
}
return output;
}
}