![JAR search and dependency download from the Maven repository](/logo.png)
gov.sandia.cognition.statistics.bayesian.conjugate.AbstractConjugatePriorBayesianEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: AbstractConjugatePriorBayesianEstimator.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Nov 16, 2009, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.statistics.bayesian.conjugate;
import gov.sandia.cognition.learning.algorithm.AbstractBatchAndIncrementalLearner;
import gov.sandia.cognition.statistics.ClosedFormDistribution;
import gov.sandia.cognition.statistics.bayesian.BayesianParameter;
import gov.sandia.cognition.util.ObjectUtil;
/**
* Partial implementation of ConjugatePriorBayesianEstimator that contains a initial belief
* (prior) distribution function.
* @param
* Observations from the ConditionalType that are used to estimate the
* parameters of the distribution.
* @param
* Type of Distribution that represents uncertainty in the parameters.
* @param
* Type of parameter estimated by this algorithm, which is used to
* parameterize the conditional distribution.
* @param
* Type of conditional distribution that generates observations for this
* relationship.
* @author Kevin R. Dixon
* @since 3.0
*/
public abstract class AbstractConjugatePriorBayesianEstimator,BeliefType extends ClosedFormDistribution>
extends AbstractBatchAndIncrementalLearner
implements ConjugatePriorBayesianEstimator
{
/**
* Bayesian hyperparameter relationship between the conditional
* distribution and the conjugate prior distribution.
*/
protected BayesianParameter parameter;
/**
* Creates a new instance of AbstractConjugatePriorBayesianEstimator
* @param parameter
* Bayesian hyperparameter relationship between the conditional
* distribution and the conjugate prior distribution.
*/
public AbstractConjugatePriorBayesianEstimator(
BayesianParameter parameter )
{
super();
this.setParameter(parameter);
}
@Override
public AbstractConjugatePriorBayesianEstimator clone()
{
@SuppressWarnings("unchecked")
AbstractConjugatePriorBayesianEstimator clone =
(AbstractConjugatePriorBayesianEstimator) super.clone();
clone.setParameter( ObjectUtil.cloneSafe( this.getParameter() ) );
return clone;
}
public BeliefType createInitialLearnedObject()
{
return ObjectUtil.cloneSmart(this.getInitialBelief());
}
public ConditionalType createConditionalDistribution(
ParameterType parameter)
{
this.parameter.setValue(parameter);
return ObjectUtil.cloneSafe(this.parameter.getConditionalDistribution());
}
/**
* Getter for initialBelief.
* @return
* Initial belief distribution of the parameters.
*/
public BeliefType getInitialBelief()
{
return this.parameter.getParameterPrior();
}
public BayesianParameter getParameter()
{
return this.parameter;
}
/**
* Setter for parameter
* @param parameter
* Bayesian hyperparameter relationship between the conditional
* distribution and the conjugate prior distribution.
*/
protected void setParameter(
BayesianParameter parameter)
{
this.parameter = parameter;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy