gov.sandia.cognition.statistics.bayesian.conjugate.ExponentialBayesianEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: ExponentialBayesianEstimator.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Apr 14, 2010, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.statistics.bayesian.conjugate;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationReferences;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.statistics.bayesian.AbstractBayesianParameter;
import gov.sandia.cognition.statistics.bayesian.BayesianParameter;
import gov.sandia.cognition.statistics.distribution.ExponentialDistribution;
import gov.sandia.cognition.statistics.distribution.GammaDistribution;
import gov.sandia.cognition.statistics.distribution.ParetoDistribution;
/**
* Conjugate prior Bayesian estimator of the "rate" parameter of an
* Exponential distribution using the conjugate prior Gamma distribution.
* @author Kevin R. Dixon
* @since 3.0
*/
@PublicationReferences(
references={
@PublicationReference(
author="Wikipedia",
title="Conjugate Prior",
type=PublicationType.WebPage,
year=2009,
url="http://en.wikipedia.org/wiki/Conjugate_prior"
)
,
@PublicationReference(
author={
"Byron J. Gajewski",
"Stephen D. Simon",
"Susan E. Carlson"
},
title="Predicting accrual in clinical trials with Bayesian posterior predictive distributions",
type=PublicationType.Journal,
year=2008,
publication="Statistics in Medicine",
notes="They derive the predictive posterior for an inverse gamma, but we're using a gamma, so we have to invert the scale parameter."
)
}
)
public class ExponentialBayesianEstimator
extends AbstractConjugatePriorBayesianEstimator
implements ConjugatePriorBayesianEstimatorPredictor
{
/**
* Default constructor.
*/
public ExponentialBayesianEstimator()
{
this( new GammaDistribution( 1.0, 1.0 ) );
}
/**
* Creates a new instance of ExponentialBayesianEstimator
* @param prior
* Default conjugate prior.
*/
public ExponentialBayesianEstimator(
GammaDistribution prior )
{
this( new ExponentialDistribution(), prior );
}
/**
* Creates a new instance of ExponentialBayesianEstimator
* @param prior
* Default conjugate prior.
* @param conditional
* Conditional distribution of the conjugate prior.
*/
public ExponentialBayesianEstimator(
ExponentialDistribution conditional,
GammaDistribution prior )
{
this( new ExponentialBayesianEstimator.Parameter(conditional, prior) );
}
/**
* Creates a new instance of ExponentialBayesianEstimator
* @param parameter
* Bayesian parameter describing this conjugate relationship.
*/
protected ExponentialBayesianEstimator(
BayesianParameter parameter )
{
super( parameter );
}
public ExponentialBayesianEstimator.Parameter createParameter(
ExponentialDistribution conditional,
GammaDistribution prior)
{
return new ExponentialBayesianEstimator.Parameter( conditional, prior );
}
public void update(
GammaDistribution belief,
Double data)
{
double alpha = belief.getShape();
double beta = 1.0/belief.getScale();
alpha++;
beta += data.doubleValue();
double theta = 1.0/beta;
belief.setShape(alpha);
belief.setScale(theta);
}
public double computeEquivalentSampleSize(
GammaDistribution belief)
{
return belief.getShape();
}
public ParetoDistribution createPredictiveDistribution(
GammaDistribution posterior)
{
return new ParetoDistribution( posterior.getShape(), 1.0/posterior.getScale(), 1.0/posterior.getScale() );
}
/**
* Bayesian parameter describing this conjugate relationship.
*/
public static class Parameter
extends AbstractBayesianParameter
{
/**
* Default name of the parameter, {@value}.
*/
public static final String NAME = "rate";
/**
* Creates a new instance of Parameter
* @param prior
* Default conjugate prior.
* @param conditional
* Conditional distribution of the conjugate prior.
*/
public Parameter(
ExponentialDistribution conditional,
GammaDistribution prior )
{
super( conditional, NAME, prior);
}
public void setValue(
Double value)
{
this.conditionalDistribution.setRate(value);
}
public Double getValue()
{
return this.conditionalDistribution.getRate();
}
}
}