gov.sandia.cognition.statistics.method.AdjustedPValueStatistic Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cognitive-foundry Show documentation
Show all versions of cognitive-foundry Show documentation
A single jar with all the Cognitive Foundry components.
/*
* File: AdjustedPValueStatistic.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright May 31, 2011, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.statistics.method;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import java.util.Collection;
/**
* A multiple-comparison statistic derived from a single adjusted p-value.
* @author Kevin R. Dixon
* @since 3.3.0
*/
@PublicationReference(
author="Wikipedia",
title="Bonferroni correction",
type=PublicationType.WebPage,
year=2011,
url="http://en.wikipedia.org/wiki/Bonferroni_correction"
)
public class AdjustedPValueStatistic
extends AbstractPairwiseMultipleHypothesisComparison.Statistic
{
/**
* Adjusted alpha term to account for multiple comparisons
*/
protected double adjustedAlpha;
/**
* Creates a new instance of StudentizedMultipleComparisonStatistic
* @param data
* Data from each treatment to consider
* @param uncompensatedAlpha
* Uncompensated alpha (p-value threshold) for the multiple comparison
* test
* @param adjustedAlpha
* Adjusted alpha term to account for multiple comparisons
* @param pairwiseTest
* Confidence test used for pair-wise null-hypothesis tests.
*/
public AdjustedPValueStatistic(
final Collection extends Collection extends Number>> data,
final double uncompensatedAlpha,
final double adjustedAlpha,
final NullHypothesisEvaluator> pairwiseTest )
{
super( data, uncompensatedAlpha, pairwiseTest );
this.adjustedAlpha = adjustedAlpha;
}
@Override
public AdjustedPValueStatistic clone()
{
return (AdjustedPValueStatistic) super.clone();
}
/**
* Getter for adjustedAlpha
* @return
* Adjusted alpha term to account for multiple comparisons
*/
public double getAdjustedAlpha()
{
return this.adjustedAlpha;
}
@Override
public double getAdjustedAlpha(
int i,
int j)
{
return this.getAdjustedAlpha();
}
}