gov.sandia.cognition.learning.function.LinearCombinationFunction Maven / Gradle / Ivy
/*
* File: LinearCombinationFunction.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright September 5, 2007, Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000, there is a non-exclusive license for use of this work by
* or on behalf of the U.S. Government. Export of this program may require a
* license from the United States Government. See CopyrightHistory.txt for
* complete details.
*
*/
package gov.sandia.cognition.learning.function;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.Vectorizable;
import gov.sandia.cognition.evaluator.Evaluator;
import gov.sandia.cognition.util.AbstractCloneableSerializable;
import gov.sandia.cognition.util.ObjectUtil;
import java.util.ArrayList;
/**
* A function whose output is a weighted linear combination of (potentially)
* nonlinear basis function.
* The output is produced as: y = a0*f0(x) + a1*f1(x) + ... + an*fn(x),
* where "y" is the output, "x" is the given input,
* "ai" is the ith coefficient and "fi" is the ith basis function
*
*
* @param Input class of the Evaluator basis functions
* @param Output class of the Evaluator basis functions
* @author Kevin R. Dixon
* @since 2.0
* @see gov.sandia.cognition.learning.algorithm.ensemble.WeightedBinaryEnsemble
*/
public abstract class LinearCombinationFunction
extends AbstractCloneableSerializable
implements Evaluator,
Vectorizable
{
/**
* Collection of basis functions to combine to produce the output
*/
private ArrayList extends Evaluator super InputType, ? extends OutputType>> basisFunctions;
/**
* Coefficients for the basisFunctions
*/
private Vector coefficients;
/**
* Creates a new instance of LinearCombinationFunction
* @param basisFunctions
* Collection of basis functions to combine to produce the output
* @param coefficients
* Coefficients for the basisFunctions
*/
public LinearCombinationFunction(
ArrayList extends Evaluator super InputType, ? extends OutputType>> basisFunctions,
Vector coefficients )
{
this.setBasisFunctions( basisFunctions );
this.setCoefficients( coefficients );
}
@Override
public LinearCombinationFunction clone()
{
@SuppressWarnings("unchecked")
LinearCombinationFunction clone =
(LinearCombinationFunction) super.clone();
clone.setBasisFunctions( ObjectUtil.cloneSmartElementsAsArrayList(
this.getBasisFunctions() ) );
clone.setCoefficients( ObjectUtil.cloneSafe(this.getCoefficients()) );
return clone;
}
/**
* Getter for coefficients
* @return
* Coefficients for the basisFunctions
*/
public Vector getCoefficients()
{
return this.coefficients;
}
/**
* Setter for coefficients
* @param coefficients
* Coefficients for the basisFunctions
*/
public void setCoefficients(
Vector coefficients )
{
if (coefficients.getDimensionality() != this.getBasisFunctions().size())
{
throw new IllegalArgumentException(
"Must have as many coefficients as basis functions!" );
}
this.coefficients = coefficients;
}
/**
* Getter for basisFunctions
* @return
* Collection of basis functions to combine to produce the output
*/
public ArrayList extends Evaluator super InputType, ? extends OutputType>> getBasisFunctions()
{
return this.basisFunctions;
}
/**
* Setter for basisFunctions
* @param basisFunctions
* Collection of basis functions to combine to produce the output
*/
public void setBasisFunctions(
ArrayList extends Evaluator super InputType, ? extends OutputType>> basisFunctions )
{
this.basisFunctions = basisFunctions;
}
public Vector convertToVector()
{
return this.getCoefficients();
}
public void convertFromVector(
Vector parameters )
{
this.setCoefficients( parameters );
}
@Override
public String toString()
{
int num = this.getBasisFunctions().size();
StringBuilder builder = new StringBuilder( 10 * num );
for (int i = 0; i < num; i++)
{
builder.append( this.getCoefficients().getElement( i ) + "*" + this.getBasisFunctions().get( i ) + " + " );
}
return builder.toString();
}
/**
* Evaluates the LinearCombinationFunction about the given input.
* The output is produced as: y = a0*f0(x) + a1*f1(x) + ... + an*fn(x),
* where "y" is the output, "x" is the given input,
* "ai" is the ith coefficient and "fi" is the ith basis function
* @param input
* The input about which to compute the output
* @return
* y = a0*f0(x) + a1*f1(x) + ... + an*fn(x)
*/
abstract public OutputType evaluate(
InputType input );
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy