gov.sandia.cognition.statistics.distribution.DeterministicDistribution Maven / Gradle / Ivy
/*
* File: DeterministicDistribution.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Feb 4, 2009, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.statistics.distribution;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.math.UnivariateScalarFunction;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.statistics.AbstractClosedFormUnivariateDistribution;
import gov.sandia.cognition.statistics.ClosedFormDiscreteUnivariateDistribution;
import gov.sandia.cognition.statistics.ClosedFormCumulativeDistributionFunction;
import gov.sandia.cognition.statistics.ProbabilityMassFunction;
import gov.sandia.cognition.statistics.ProbabilityMassFunctionUtil;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Random;
import java.util.Set;
/**
* A deterministic distribution that returns samples at a single point. This
* is also known as a degenerate distribution.
* @author Kevin R. Dixon
* @since 3.0
*/
@PublicationReference(
author="Wikipedia",
title="Degenerate distribution",
type=PublicationType.WebPage,
year=2009,
url="http://en.wikipedia.org/wiki/Degenerate_distribution"
)
public class DeterministicDistribution
extends AbstractClosedFormUnivariateDistribution
implements ClosedFormDiscreteUnivariateDistribution
{
/**
* Default point, {@value}
*/
public static final double DEFAULT_POINT = 0.0;
/**
* Location of the distribution
*/
private double point;
/**
* Creates a new instance of DeterministicDistribution
*/
public DeterministicDistribution()
{
this( DEFAULT_POINT );
}
/**
* Creates a new instance of DeterministicDistribution
* @param point
* Location of the distribution
*/
public DeterministicDistribution(
final double point )
{
this.setPoint( point );
}
/**
* Copy Constructor
* @param other DeterministicDistribution to copy
*/
public DeterministicDistribution(
final DeterministicDistribution other )
{
this( other.getPoint() );
}
/**
* Getter for point
* @return
* Location of the distribution
*/
public double getPoint()
{
return this.point;
}
/**
* Setter for point
* @param point
* Location of the distribution
*/
public void setPoint(
final double point )
{
this.point = point;
}
@Override
public Double getMean()
{
return this.getMeanAsDouble();
}
@Override
public double getMeanAsDouble()
{
return this.getPoint();
}
@Override
public void sampleInto(
final Random random,
final int sampleCount,
final Collection super Double> output)
{
for( int n = 0; n < sampleCount; n++ )
{
output.add( this.getPoint() );
}
}
@Override
public Vector convertToVector()
{
return VectorFactory.getDefault().copyValues( this.getPoint() );
}
@Override
public void convertFromVector(
final Vector parameters )
{
if( parameters.getDimensionality() != 1 )
{
throw new IllegalArgumentException( "Parameter dimension must be 1" );
}
this.setPoint( parameters.getElement( 0 ) );
}
@Override
public double getVariance()
{
return 0.0;
}
@Override
public DeterministicDistribution.CDF getCDF()
{
return new DeterministicDistribution.CDF( this );
}
@Override
public Double getMinSupport()
{
return this.getPoint();
}
@Override
public Double getMaxSupport()
{
return this.getPoint();
}
@Override
public Set getDomain()
{
return Collections.singleton(this.getPoint());
}
@Override
public int getDomainSize()
{
return 1;
}
@Override
public DeterministicDistribution.PMF getProbabilityFunction()
{
return new DeterministicDistribution.PMF( this );
}
/**
* PMF of the deterministic distribution.
*/
public static class PMF
extends DeterministicDistribution
implements ProbabilityMassFunction
{
/**
* Creates a new instance of DeterministicDistribution
*/
public PMF()
{
super();
}
/**
* Creates a new instance of DeterministicDistribution
* @param point
* Location of the distribution
*/
public PMF(
final double point )
{
super( point );
}
/**
* Copy Constructor
* @param other DeterministicDistribution to copy
*/
public PMF(
final DeterministicDistribution other )
{
super( other );
}
@Override
public double getEntropy()
{
return ProbabilityMassFunctionUtil.getEntropy(this);
}
@Override
public double logEvaluate(
final Double input)
{
return Math.log(this.evaluate(input));
}
@Override
public Double evaluate(
final Double input)
{
return (input.doubleValue() == this.getPoint()) ? 1.0 : 0.0;
}
@Override
public DeterministicDistribution.PMF getProbabilityFunction()
{
return this;
}
}
/**
* CDF of the deterministic distribution.
*/
public static class CDF
extends DeterministicDistribution
implements ClosedFormCumulativeDistributionFunction,
UnivariateScalarFunction
{
/**
* Creates a new instance of DeterministicDistribution
*/
public CDF()
{
super();
}
/**
* Creates a new instance of DeterministicDistribution
* @param point
* Location of the distribution
*/
public CDF(
final double point )
{
super( point );
}
/**
* Copy Constructor
* @param other DeterministicDistribution to copy
*/
public CDF(
final DeterministicDistribution other )
{
super( other );
}
@Override
public Double evaluate(
final Double input )
{
return this.evaluate( input.doubleValue() );
}
@Override
public double evaluateAsDouble(
final Double input)
{
return this.evaluate(input.doubleValue());
}
@Override
public double evaluate(
final double input )
{
return (input < this.getPoint()) ? 0.0 : 1.0;
}
@Override
public DeterministicDistribution.CDF getCDF()
{
return this;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy