gov.sandia.cognition.statistics.distribution.CauchyDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gov-sandia-cognition-learning-core Show documentation
Show all versions of gov-sandia-cognition-learning-core Show documentation
Algorithms and components for machine learning and statistics.
The newest version!
/*
* File: CauchyDistribution.java
* Authors: Kevin R. Dixon
* Company: Sandia National Laboratories
* Project: Cognitive Foundry
*
* Copyright Feb 25, 2010, Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the U.S. Government.
* Export of this program may require a license from the United States
* Government. See CopyrightHistory.txt for complete details.
*
*/
package gov.sandia.cognition.statistics.distribution;
import gov.sandia.cognition.annotation.PublicationReference;
import gov.sandia.cognition.annotation.PublicationType;
import gov.sandia.cognition.math.matrix.Vector;
import gov.sandia.cognition.math.matrix.VectorFactory;
import gov.sandia.cognition.statistics.AbstractClosedFormSmoothUnivariateDistribution;
import gov.sandia.cognition.statistics.UnivariateProbabilityDensityFunction;
import gov.sandia.cognition.statistics.SmoothCumulativeDistributionFunction;
import java.util.ArrayList;
import java.util.Random;
/**
* A Cauchy Distribution is the ratio of two Gaussian Distributions, sometimes
* known as the Lorentz distribution. The mean is undefined and it has
* infinite variance.
* @author Kevin R. Dixon
* @since 3.0
*/
@PublicationReference(
author="Wikipedia",
title="Cauchy distribution",
type=PublicationType.WebPage,
year=2010,
url="http://en.wikipedia.org/wiki/Cauchy_distribution"
)
public class CauchyDistribution
extends AbstractClosedFormSmoothUnivariateDistribution
{
/**
* Default location, {@value}.
*/
public static final double DEFAULT_LOCATION = 0.0;
/**
* Default scale, {@value}.
*/
public static final double DEFAULT_SCALE = 1.0;
/**
* Central location (also the median and mode) of the distribution.
*/
protected double location;
/**
* Scale of the distribution, must be greater than zero.
*/
protected double scale;
/**
* Creates a new instance of CauchyDistribution
*/
public CauchyDistribution()
{
this( DEFAULT_LOCATION, DEFAULT_SCALE );
}
/**
* Creates a new instance of CauchyDistribution
* @param location
* Central location (also the median and mode) of the distribution.
* @param scale
* Scale of the distribution, must be greater than zero.
*/
public CauchyDistribution(
final double location,
final double scale)
{
this.location = location;
this.scale = scale;
}
/**
* Copy constructor
* @param other
* CauchyDistribution to copy.
*/
public CauchyDistribution(
final CauchyDistribution other )
{
this( other.getLocation(), other.getScale() );
}
@Override
public CauchyDistribution clone()
{
CauchyDistribution clone = (CauchyDistribution) super.clone();
return clone;
}
/**
* Getter for location.
* @return
* Central location (also the median and mode) of the distribution.
*/
public double getLocation()
{
return this.location;
}
/**
* Setter for location
* @param location
* Central location (also the median and mode) of the distribution.
*/
public void setLocation(
final double location)
{
this.location = location;
}
/**
* Getter for scale.
* @return
* Scale of the distribution, must be greater than zero.
*/
public double getScale()
{
return this.scale;
}
/**
* Setter for scale
* @param scale
* Scale of the distribution, must be greater than zero.
*/
public void setScale(
final double scale)
{
if( scale <= 0.0 )
{
throw new IllegalArgumentException( "Scale must be > 0.0" );
}
this.scale = scale;
}
@Override
public Double getMean()
{
// The mean of a Cauchy is undefined due to its heavy tails.
// However, a Cauchy distribution is symmetric about the "location"
// parameter. So, one common-sense interpretation of the mean is that
// it's equal to the median of a symmetric distribution.
// So that's what I'm going with.
return this.getLocation();
}
@Override
public double getMeanAsDouble()
{
return this.getLocation();
}
@Override
public double sampleAsDouble(
final Random random)
{
double g1 = random.nextGaussian();
double g2 = random.nextGaussian();
double ratio = g1/g2;
double scaled = ratio * this.scale;
return scaled + this.location;
}
@Override
public void sampleInto(
final Random random,
final double[] output,
final int start,
final int length)
{
final int end = start + length;
for (int i = start; i < end; i++)
{
output[i] = this.sampleAsDouble(random);
}
}
@Override
public CauchyDistribution.CDF getCDF()
{
return new CauchyDistribution.CDF( this );
}
@Override
public Vector convertToVector()
{
return VectorFactory.getDefault().copyValues(
this.getLocation(), this.getScale() );
}
@Override
public void convertFromVector(
final Vector parameters)
{
parameters.assertDimensionalityEquals(2);
this.setLocation( parameters.getElement(0) );
this.setScale( parameters.getElement(1) );
}
@Override
public double getVariance()
{
return Double.POSITIVE_INFINITY;
}
@Override
public CauchyDistribution.PDF getProbabilityFunction()
{
return new CauchyDistribution.PDF( this );
}
@Override
public Double getMinSupport()
{
return Double.NEGATIVE_INFINITY;
}
@Override
public Double getMaxSupport()
{
return Double.POSITIVE_INFINITY;
}
/**
* PDF of the CauchyDistribution.
*/
public static class PDF
extends CauchyDistribution
implements UnivariateProbabilityDensityFunction
{
/**
* Creates a new instance of CauchyDistribution
*/
public PDF()
{
super( DEFAULT_LOCATION, DEFAULT_SCALE );
}
/**
* Creates a new instance of CauchyDistribution
* @param location
* Central location (also the median and mode) of the distribution.
* @param scale
* Scale of the distribution, must be greater than zero.
*/
public PDF(
final double location,
final double scale)
{
super( location, scale );
}
/**
* Copy constructor
* @param other
* CauchyDistribution to copy.
*/
public PDF(
final CauchyDistribution other )
{
super( other );
}
@Override
public double logEvaluate(
final Double input)
{
return this.logEvaluate((double) input);
}
@Override
public double logEvaluate(
final double input)
{
return Math.log(this.evaluate(input));
}
@Override
public Double evaluate(
final Double input)
{
return this.evaluate( input.doubleValue() );
}
@Override
public double evaluateAsDouble(
final Double input)
{
return this.evaluate(input.doubleValue());
}
@Override
public double evaluate(
final double input)
{
final double leading = Math.PI * this.scale;
final double d1 = (input - this.location) / this.scale;
final double dx = 1.0 + d1*d1;
final double denominator = leading * dx;
return 1.0/denominator;
}
@Override
public CauchyDistribution.PDF getProbabilityFunction()
{
return this;
}
}
/**
* CDF of the CauchyDistribution.
*/
public static class CDF
extends CauchyDistribution
implements SmoothCumulativeDistributionFunction
{
/**
* Creates a new instance of CauchyDistribution
*/
public CDF()
{
super( DEFAULT_LOCATION, DEFAULT_SCALE );
}
/**
* Creates a new instance of CauchyDistribution
* @param location
* Central location (also the median and mode) of the distribution.
* @param scale
* Scale of the distribution, must be greater than zero.
*/
public CDF(
final double location,
final double scale)
{
super( location, scale );
}
/**
* Copy constructor
* @param other
* CauchyDistribution to copy.
*/
public CDF(
final CauchyDistribution other )
{
super( other );
}
@Override
public Double evaluate(
final Double input)
{
return this.evaluate( input.doubleValue() );
}
@Override
public double evaluateAsDouble(
final Double input)
{
return this.evaluate(input.doubleValue());
}
@Override
public double evaluate(
final double input)
{
double d1 = Math.atan( (input - this.location)/this.scale );
return d1/Math.PI + 0.5;
}
@Override
public CauchyDistribution.CDF getCDF()
{
return this;
}
@Override
public CauchyDistribution.PDF getDerivative()
{
return this.getProbabilityFunction();
}
@Override
public Double differentiate(
final Double input)
{
return this.getDerivative().evaluate(input);
}
}
}