jvmMain.zakadabar.lib.lucene.business.index.knn.DemoEmbeddings.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-jvm Show documentation
Show all versions of lucene-jvm Show documentation
Kotlin/Ktor based full-stack platform
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package zakadabar.lib.lucene.business.index.knn
import org.apache.lucene.analysis.Analyzer
import org.apache.lucene.analysis.LowerCaseFilter
import org.apache.lucene.analysis.TokenStream
import org.apache.lucene.analysis.Tokenizer
import org.apache.lucene.analysis.standard.StandardTokenizer
import java.io.IOException
import java.io.Reader
import java.io.StringReader
/**
* This class provides [.computeEmbedding] and [.computeEmbedding] for
* calculating "semantic" embedding vectors for textual input.
*/
class DemoEmbeddings(vectorDict: KnnVectorDict) {
private val analyzer: Analyzer
init {
analyzer = object : Analyzer() {
override fun createComponents(fieldName: String): TokenStreamComponents {
val tokenizer: Tokenizer = StandardTokenizer()
val output: TokenStream = KnnVectorDictFilter(LowerCaseFilter(tokenizer), vectorDict)
return TokenStreamComponents(tokenizer, output)
}
}
}
/**
* Tokenize and lower-case the input, look up the tokens in the dictionary, and sum the token
* vectors. Unrecognized tokens are ignored. The resulting vector is normalized to unit length.
*
* @param input the input to analyze
* @return the KnnVector for the input
*/
@Throws(IOException::class)
fun computeEmbedding(input: String): FloatArray {
return computeEmbedding(StringReader(input))
}
/**
* Tokenize and lower-case the input, look up the tokens in the dictionary, and sum the token
* vectors. Unrecognized tokens are ignored. The resulting vector is normalized to unit length.
*
* @param input the input to analyze
* @return the KnnVector for the input
*/
@Throws(IOException::class)
fun computeEmbedding(input: Reader?): FloatArray {
analyzer.tokenStream("dummyField", input).use { tokens ->
tokens.reset()
@Suppress("ControlFlowWithEmptyBody")
while (tokens.incrementToken()) { }
tokens.end()
return (tokens as KnnVectorDictFilter).result
}
}
}